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EXECUTIVE SUMMARY

This final report covers funded projects which include: (1) Flow Boiling Enhancement
For Thermal Management Systems; and (2) a supplement to the former title, entitled
Enhancement for Thermal Management Systems. As part of one of the main objectives of the
proposed work, a vertical flow loop was designed and built to determine local (circumferential
and axial) and mean wall temperature distributions for saturated and subcooled flow boiling in a
single-side heated vertical channel with downward flow. Experimental results are given for flow
with Freon-11 mass velocities of 280, 210.0, and 140.0 kg/mzs. The measurements indicate a
significant circumferential variation in the temperature. The data indicate that a different mode of
heat transfer is present at each circumferential location. The two-dimensional local
measurements of the channel wall temperature show that corresponding local heat transfer
coefficient variations will be significant.

The results for the vertical downward flow in a single-side heated channel with a Freon-
11 mass velocity of 210.0 kg/m2s are summarized. The two-dimensional local (axial and
circumferential) measurements of the channel outside wall temperature were obtained
experimentally and the corresponding axially and circumferentially mean heat transfer
coefficients h were calculated. This flow configuration was shown to have twenty percent higher
values of h and forty percent higher ultimate critical heat flux than the case of a top-heated
channel with horizontal flow. The data points to the existence of multiple levels of critical heat

flux, which is unique to the single-side heated geometry. Finally, these averaged heat transfer
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coefficients ranged from 30.0 to 230.0 W/m’K for the net heat flux range of 180.0 to 11,000.0
W/m?,

The results obtained for downward flow boiling in vertical tubes were compared with
identical test runs for Freon-11 flowing in horizontal channels with a top-side heating
configuration. The experiments show a significant effect of flow direction on local outside wall
temperatures and the averaged heat transfer coefficient.

The results of comparisons of flow boiling heat transfer in uniform and single-side heated
tubes with existing single-phase and two-phase correlation are presented. Dittus-Boelter and
Petukhov’s single-phase correlation are used to compare experimentally obtained single-pahse
data; and Shah, and Liu-Winterton’s two-phase correlation are used two-phase heat transfer data.
The results of these comparisons show that some of our experimental data is in good agreement
with the existing single-side heat transfer correlations for both uniform, and single-side heated
case. Although the Liu-Winterton correlation had better agreement at low power levels and axial
locations, the Shah correlation had better agreement at higher power levels and at axial locations
near the center of the heated length. Both correlations overpredicted the data near the exit. Both
corelations overpredicted the data near the exit. Therefore, additional correlational
developmental work is needed for local (axial) heat transfer in circumferentially non-uniform
heated channels.

A steady state version of an inverse heat conduction (IHC) technique was used to perform
two-dimensional (2-D) data reduction for selected experiments. The IHC technique is used to
determine circumferential variation of heat transfer coefficient on one surface from the known
values of a set of measured temperatures at specific locations and the known boundary condition
on the other surface. Results on a horizontal test section top heated case show that the value of
heat transfer coefficient increases from the top to a maximum value at around 45 degrees and
then decreases drastically towards the unheated bottom portion.

This study has demonstrated that two-dimensional temperature variations are significant
in two-phase thermal management systems which are heated from one side of the flow channels.
Progress in advanced space thermal management systems requiring high heat flux removal will

hinge on expanding the results of this study.

iii



Hil




(

AN

(!
i1

{

LI

N

o

{ili

[

LRI

|
|

{1

i\
i

Al

L

Although most of the funded NASA work at Prairie View has not resulted in technical

papers in international publications, this work has resulted in the following published technical

papers (see the Appendix for the complete reprints):

1. Boyd, R., Smith, A., and Turknett, J., 1995, “Two-Dimensional Wall Temperature
Measurements and Heat Transfer Enhancement for Top-Heated Horizontal Channels
with Flow Boiling,” Journal of Experimental Thermal and Fluid Science, Vol. 11, pp.
372-386.

2. Boyd, R., Smith, A., and Turknett, J., 1994, “Measurements of Local Heat Transfer for
Forced Convection and Flow Boiling in Horizontal, Uniformly Heated Smooth Tubes,”
Journal of Experimental Heat Transfer, Vol. 7, pp. 19-29.

3. Peatiwala, Q., Boyd, R., and Huque, Z., 1995 “Multi-Dimensional Wall Temperature
and Boiling Curves for a Single-Side Heated Vertical Channel with Downward Flow,”
1995 ASME/AIAA National Heat Transfer Conference, pp. 1-10.

4. Peatiwala, Q. and Boyd, R. D., 1995, “Forced Convection and Flow Boiling in a
Single-Side Heated Vertical Smooth Channel with Downward Flow,” 1995 National
Heat Transfer Conference, HTD-Vol. 314, pp. 133-143.
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- NOMENCLATURE

v
o

Boiling number

Channel inside diameter (m)

Sum of squared temperature error

Mass Velocity (kg/mzs)

Heat transfer coefficient, (W/mzK)

7 Circumferentially-averaged but axially distributed heat transfer

- coefficient (j = 1, 2, ...7(W/m’K)
Thermal conductivity (W/m K)
Heated length, m
Total number of measuring points

w  Molecular Weight

, Total number of h; coefficients

hat ONB Onset of Nucleate Boiling

Pe Peclet number (Re Pr)

Pr Liquid Prandtl

Fromy

C
rA- 44 aid

P: Reduced pressure
Eq q Heat flux, (W/mz)
Qg Heat generation rate in wall per unit area
Re Liquid only Reynolds number
=] St Stanton Number
= T Temperature (K)
T,,  Circumferentially averaged wall temperature (OC)
= T, Calculated temperature
- T,  Measured temperature
X Quality
= x* Equilibrium quality at the axial location where T, = Ty
ot Z Axial coordinate or measurement location in the heated section of the test section (m)
i; Z; Axial coordinate or measurement location in the heated section of the test section (m)
= Greek
S ) Circumferential coordinate or measurement location (degrees)
- v Dynamic viscosity, (N s/m%)
= SUBSCRIPTS
= b Bulk fluid
- i Circumferential location measuring points index
j Axial location measuring points index
= L Liquid
- NB  Nucleate boiling

pool Pool boiling
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FLOW BOILING ENHCANCEMENT FOR
THERMAL MANAGEMENT SYSTEMS

1.0 MULTI-DIMENSIONAL WALL TEMPERATURE AND BOILING CURVES FOR
A SINGLE- SIDE HEATED VERTICAL CHANNEL WITH DOWNWARD FLOW

1.1 INTRODUCTION AND OBJECTIVES

Future space programs and commercialization will require an active thermal control system (Miller
et al. [1]) to provide moderate temperature heat rejection for different system modules. It is essential that
the thermal rejection system selected be able to operate under a variety of complex and non-uniform heat
flux distributions. Other requirements for the selected system include minimum overall system mass,
and pumping power (Ungar et al. [2] and Reinarts et al. [3]). The high heat flux potential and low mass
requirement of the two-phase thermal control system makes them an attractive option for advanced
space applications. Although work is proceeding in studying the two-phase pressure drop [2, 3], little
efforts are being devoted to studying heat transfer related topics in single-side heated systems. In
particular, optimization of the heat transfer, with accompanying reduced mass and pumping power
requirements, will require a knowledge of the two-dimensional wall temperature distributions in
advanced and commercial space systems (Boyd et al. [4]). Implementation of two-phase thermal control
system will also require additional emphasis on flow boiling phenomenon as it pertains to non-uniform
heat flux distributions, resulting wall temperature distributions, heat transfer coefficients, flow channel
aspect ratio, and orientation.

From the literature review, there has been much work completed for the two-phase heat transfer
correlations for a uniform heat flux distribution. Correlations presented by Kandlikar, [S] Shah, [6]
Gungor and Winterton, [7] and Boyd and Meng 7[8] cover different fluids, vast ranges of flow rafes, the
entire spectrum of quality, and low and high subcoolings. The former three correlations were only
recommended for saturated flow boiling and the latter for subcooled flow boiling. These correlations are
valid for only smooth tubes, and one must avoid using them when orientation is important. The former
three correlations were derived from the data collected from horizontal flow boiling, where as the latter
for high Froude number (> 50.0). Recently, several researchers have considered the effect of heat

transfer enhancement devices (fins, and twisted tapes) and have presented correlations, but most of these
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are again for horizontal flow boiling or condensation on horizontal tubes. Patankar et al., [9] Wen et al.,
[10] and Jaber et al., [11] have studied the effect of fins on the heat transfer coefficient for condensation.
While Wen et al. [10] presented experimental data to facilitate theoretical model development of heat
transfer coefficient for condensation on horizontal integral-finned tubes, Jaber et al. [11] found that the
condensation heat transfer coefficient can be increased by up to 280% for copper if commercially
available enhanced tubes are used in condensers over smooth copper: tubes. He also looked at copper
alloy tubes and found that heat transfer is enhanced by an average of over 30% with finned tubes relative
to smooth tubes. Boyd et al. [4], Smith, [12] and Turknett, [13] have studied the flow boiling in
horizontal channels with uniform and top-side heating with and without enhancements. They made
measurements of the two-dimensional axial and circumferential wall temperature distributions, and
presented results for the axial distribution of the heat transfer coefficient for four internal tube
configurations.

As stated before almost all of the work done in two phase flow is for uniform heat flux and for this
heat loading condition, there is no circumferential variation in wall temperature. Hence, at any power
level only single mode of heat transfer is used to calculate heat transfer coefficient at a given axial
location. It is understandable that by using a uniform heat flux distribution, the modeling for heat
transfer coefficient is greatly simplified; but in engineering applications with non-uniform
circumferential heat flux distributions, this work will show that the wall temperature variations are
significant. Some applications where this may be important include thermal management for the
advanced space systems, high heat flux fusion components, high heat flux electronic components, in-
tube boiling systems, boilers, condensers, and heat exchangers. It should be made clear here that great
care must be taken when approximating a non-uniform heat flux condition with a uniform one because
by using this approximation, severe restricts or even anomalies may result. This is another reason why
applications requiring single-side heating of channels with flow boiling will be better characterized by
measurements of the local 2-D wall temperature and heat transfer variations.

For advanced space thermal management systems to become a reality, extensive efforts are needed to
collect and correlate 2-D two-phase experimental data for heat transfer correlations for complex heat
flux distributions. The long-range scope of this study includes making 2-D wall temperature
measurements as a function of mass velocity, inlet subcooling, tube diameter, tube internal geometry,

tube orientation, gravity level, and heating configuration. The anticipated Freon -11 mass velocity and
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tube diameter range between 95.0 and 1,300.0 kg/mzs, and between 9.5 and 25.4 mm, respectively. The
tube inside wall configuration will include smooth wall, finned wall, and combined twisted tape and
finned walls. In the present paper, we present an example of 2-D outside wall temperature measurements
made with subcooled Freon-11 flowing downward in a smooth vertical channel with single-sided

heating and study the effects of different mass velocities on wall temperature distribution.

1.2 EXPERIMENTAL SETUP

The system used to perform forced convection boiling experiments in vertical tubes (downward
flow) was based on the system initially developed by Boyd et al. [4] and later used by Smith [12], Boyd,
[14] and Turknett [13]. Figure 1a shows the Freon-11 vertical flow boiling loop. This closed loop is
constructed of stainless steel and copper, and operates between 3.4 kPA and 0.17 MPa. The maximum
power generation capability is 2.7 kW and the maximum volume flow rate is approximately 2.97E-4
m3/sec. The Freon-11 is stored in a reservoir which is filled using a chemical resistance centrifugal
pump. After filling the reservoir, the Freon-11 is circulated through the closed loop at the desired
operating pressure and flow rate. By circulating the Freon-11 before any data is recorded, any leaks in
the system can be detected by using a halogen leak detector. Then the desired inlet temperature is
obtained by properly adjusting the chiller/isothermal bath. The energy is transferred between the chiller
and Freon-11 by way of a commonly connected heat exchanger. During testing, the outlet temperature
of the chiller is adjusted to maintain a constant inlet Freon-11 temperature for a given experimental run.
The working fluid for the chiller is a 60/40 ethylene glycol - distilled water mixture.

A description of the closed flow loop and the function of its components is instructive. The Freon-11
flows from the reservoir to the filter, where all the contaminates are removed before the fluid enters the
positi\;e displacement pump. The positive displacement pump requires a net positive suction of at least
0.02 MPa. This pump was selected for durability. After leaving the pump, the fluid passes through the
pulsation damper. The damper reduces the pressure and flow oscillations. The pressure fluctuations are
also minimized by using the pneumatically controlled metering valve. Exiting the control valve, the fluid
flows to the heat exchanger, where its temperature is set at a desired value by adjusting the chiller
parameters. After exiting the heat exchanger, the fluid passes through the turbine flow meter and enters
the unheated "flow developing” section or upstream part of the test section which has a length greater

than forty (40) times the test section diameter. The fluid then enters the heated section of the test section.
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A downstream pneumatically controlled valve is used to control the test section exit pressure. The heated
fluid then passes through another heat exchanger where the energy generated is removed partially by
using tap water. Finally, the fluid flows back to the reservoir and the flow cycle is complete.

The test sections used in this experiment are the same as used by Boyd et al. [4] The test sections are
2.235 m long copper tubes (see Figure 1b), and consists of two parts: (1) Upstream unheated section to
facilitate flow development, and (2) A downstream single-side heated section. For the present case, the
inside diameter (D) was 25.4 mm and the outside diameter was 28.5 mm.

The heated section has a smooth inside surface. The test section was heated with heater tapes which
varied in width based on tube diameter and are 1.22 m long. Each tape has power generation capacity of
2.66 kW. The test section was designed with flexibility and ease of replacement in mind. Although, the
pressure losses due to union connector at both top and bottom ends of the test section are assumed to be
small, computations and additional measurements, will be performed later to estimate these losses. The
entire test section was insulated to minimize the heat losses. In addition to the primary two parts of the
main test section, each part had pressure-temperature measurement ports upstream and downstream of
the test section.

The heated part of the test section was divided into seven .203 m axial intervals. At each of the axial
locations there are seven thermocouples installed circumferentially at 0, n/4, 3n/8, n/2, Sn/8, 3n/4, and
7 degrees (see Figure 2) , with 0 being at the top heated portion of vertical symmetry plane in Figure 8.
This test section thermocouple arrangement will allow better circumferential resolution of the wall
temperature variation than previous test sections (Boyd, [14] Smith, [12] and Turknett, [13]) because
seven circumferential locations were used rather than four.

‘The thermocouples were installed by using high thermal conductivity epoxy. Special care was
taken when thermocouples were adhered to the tube. The thermocouple beads were placed in good
contact with the tube so that as little epoxy as possible was used. Based on forty repeated measurements
of the epoxy thickness between the thermocouple and the copper tube, the mean thickness was 0.194

mm, and the standard deviation was 0.007 mm.

1.3 DATA REDUCTION ANALYSIS

Forty-nine (49) local temperature measurements were made on the outside surface of the heated

portion of the test section for each experiment. These outside temperatures must be related to the inside
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wall temperature so that the inside heat transfer coefficient can be computed. Two techniques will be

used to reduce the wall temperature data: (1) the heated thermal hydraulic approach (Boyd et al. [4]), see

Figure 3, and (2) a multi-dimensional inverse conduction analysis using a numerical finite element

computation code called ANSYS.
The initial data reduction is based on the heated hydraulic approach used by Boyd et al. [4] In this

analysis, we compute circumferentially averaged heat transfer coefficient from circumferentially

averaged wall temperature. The circumferentially averaged temperature was computed from the seven

wall temperature measurements made on copper tube outside surface at each axial location by using the

piece-wise linear approach similar to that used by Reid et al. [15] Using their approach, the

circumferentially averaged outside wall temperature can be related to the seven circumferential

measured temperatures (Tp,,; at 0 degrees, Tpy, at /4, T,; at 3n/8 etc.) by the equation given below:

T = 2T, + 3T + 205 + 2T +2Ts + 3T + 2Ty )
av 16 .

The temperature Tqy was used with the model presented by Boyd et al. [4] to account for

temperature drop across channel walls, and convective and radiative heat losses to the surroundings.

Using this model, the mean heat transfer coefficient (hy; ) at a given axial location can be obtained. The

uncertainties for each measurement in this experiment are as follows: (1) for geometric measurements, *
0.001mm; (2) for voltage, + 0.05 mV; (3) for current, + 0.005 mA; (4) for pressure, + 0.7 Pa; (5) for

flow rate, £ 6.3E-7 m3/s; and the resulting uncertainty in wall temperature was estimated to be , 0.2

°C.

1.4 RESULTS

For a 25.4 mm inside diameter single-side heated test section, 2-D (axial and circumferential) wall

temperature distribution results are presented for mass velocities (G) of 280.0, 210, and 140 kg/mzs, for

an inlet temperature of 22.6 °C, and an exit pressure of 0.1843 MPa (absolute).

2-D Wall Temperature Distribution
gh 10 show the distributions as measured outside wall temperature at different

ocations for mass velocities of 280.0, 210, and 140 kg/m’s. The wall

flowed from upstream to downstream (axial locations #1 to #7) in the

Figures 4 throu
circumferential and axial |

temperature increased as the fluid
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test section. Furthermore as ¢ varied from 0 to n, the temperature decreased circumferentially because of
a change from a circumferentially heated region (¢ = 0 to /2 ) to a non-heated one (¢ = 57/8 to =) for all
the flow rates. This éhange in temperature can be observed clearly in Figures 10 through 16.

It is desired to present the local 2-D wall temperature profile with respect to the net power generation
for all forty-nine axial and circumferential locations for three different levels of mass velocity. In order
to facilitate this, Figures 4 through 10 contain the profiles for ¢ = 0 to 180.0 degrees, where Figures a
and b (e.g., 4a and 4b) in this figure series contain profiles for different axial locations. Figures 4a, 5a,
6a, etc. each contain profiles for axial location Z,, Z, , Z; , and Z,. Finally, Figures 4b, 5b, 6b, etc. each
contain profiles for axial locations Zs , Z , and Z,.

From these figures, it can be seen that the wall temperature distributions are closely spaced for ¢ = 0
to n/2 and ¢ = 5n/8 to . This is to be expected because of single-side heating. From the plots, one can
also observe that the wall temperature at ¢ = 0 remains above the saturation temperature (Tsat =
41.65°C) and the wall temperatures at ¢ = 5n/8, 3n/4, and n were consistently below Tsat for all the
mass velocities except at the highest power levels.

Although the data analysis is continuing, preliminary computations using the Davis-Anderson
correlation (Davis and Anderson, [16]) indicate that the onset to nucleate boiling occurs at a wall
temperature of 45.7°C, 44.1°C, and 42.45°C for mass velocities of 280, 210, and 140 kg/mzs,
respectively. For the computations, all Freon-11 properties were evaluated at the saturation temperature
using Perry’s handbook [17]. Using these computations as a basis and the basic characteristics of the
boiling curve, both axial and circumferential influences on the quasi-boiling curve are displayed in
Figure 4 through 10. Figure 4 (¢ = 0.0 degrees) through Figure 7 (¢ = 90.0 degrees) show that the onset
of nucleate boiling (ONB) at G = 210.0 kg/mzs does occur slightly above 41.7°C simultaneously over
the hea'ted section. For the conditions shown, this occurred at a power below 181.2 W simultaneously at
all axial locations between locations #2 and #6. For G = 280.0 kg/m’s, ONB in a similar fashion occured
below 312.0 W. The onset to fully developed boiling (OFDB) for G = 210.0 kg/m®s occurred
simultaneously at all these locations at a power level of 181.2 W. Although further data reduction is
needed to determine actual inside wall temperatures, it is clear from the figures that th¢ boiling curve
will shift to the right with higher values of Z. The data also show a slight increase in [T,,],, (outside wall
temperature) in the circumferential direction from ¢ = 90.0 degrees to 0.0 degrees. These data provide a

quantitative record which shows the regions or patches where various simultaneous boiling phenomena

24



==

"
wi

(




C

(!

{

LI

CIHL

g

¢ 1

LV

"
Y |

(i

iy

occurred. Even though the test section was made of highly conducting copper, the measured outside wall
temperatures cannot be used directly to correlate ONB or CHF. However, these measurements are
closely linked to the local variations of the inside wall temperature and hence are related to the local
two-dimensional boiling heat transfer at the inside wall.

From the above discussion of wall temperature distributions, some additional characteristics of the
curves become apparent. The critical heat flux occurred between ¢ = 0.0 and 90.0 degrees at power
levels above 212.7 W for 210.0, and near 212.7 W for 140.0 kg/mzs. The data for 280.0 kg/mzs must be

extended so that similar observations can be made.

Effect of Mass Velocity Variations

In this work, we have presented the complete wall temperature profile for three different mass
velocities namely, 280.0, 210.0 and 140.0 kg/mzs. for the same tube of inside diameter of 24.5 mm.
Figures 4 through 10 show the complete profile of the wall temperature for all the three mass velocities.
From these plots, it is clear that there is significant effect of mass velocity on the wall temperature for
this single-side heating configuration. From Figures 4 through 10, the effect of mass velocity at lower
power levels on wall temperature and mode of heat transfer are not significant. However for higher
power levels, increases in the mass velocity shift the quasi-boiling curve to the left with a corresponding
increase in slope in both the heated and unheated regions.

Figures 4 through 10 show also a clear change in the shape of the boiling curve with respect to both
mass velocity and circumferential orientation. For ¢ less than or equal to 90.0 degrees, increasing the
mass velocity by identical increments from 140.0 kg/m’s to 210.0 kg/m’s and from 210.0 kg/m’s to
280.0 kg/m’s results in greater heat transfer enhancement for the latter range. Further, these figures show
that for moderate power levels the flow structure results in the boiling curves for the former range almost
overlaying one another. However, the boiling curves for latter or higher mass velocity range are
completely separated one from another. At the higher mass velocities and for ¢ < 90.0 degrees, the slope
of the boiling curves increases and later decreases as ¢ increases. This emphasizes the three dimensional
nature of the flow, and in particular the circumferential dependence due to single-side heating. Finally,
the circumferential propagation of the boiling front can be seen by comparing Figures 4 through 7 with
Figures 8 through 10 for G = 140.0 kg/m’s. At lower values of ¢, ONB occurs below 181.0 W; however

for larger ¢, ONB occurs near 420.0 W. So as ¢ increases from 90.0 degrees, the stratified nature of the
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flow is obvious at all axial locations and all mass velocities for this downward vertical flow in a single-
side heated channel.

In section 4, the axial distribution of the circumferentially averaged heat transfer coefficient using
the thermal hydraulic approach (Boyd et al. [4]) for different diameters and different mass flow rates.
Further work is needed to obtain the local (axial and circumferential) heat transfer coefficient using a

non-linear inverse conduction approach (Huque and Boyd [18]).

1.5 SUMMARY

Two-dimensional wall temperature measurements were presented for the forced convection boiling
of Freon-11 in a single-side heated vertical channel with downward flow for a mass flow rate of 280.0,
210.0, and 140.0 kg/mzs. Experimental data was obtained for circumferential and axial wall temperature
distributions. The measurments show that the boiling curve changes significantly at higher mass
velocities and with respect to both circumferential and axial coordinates. Due to circumferential

transport, the slope of the boiling curve changes in a non-monotonic fashion as ¢ increases.
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2.0 FORCED CONVECTION AND FLOW BOILING IN A SINGLE-SIDE
HEATED VERTICAL SMOOTH CHANNEL WITH DOWNWARD FLOW

2.1 INTRODUCTION AND OBJECTIVES

Near and long term missions of the National Aeronautics and Space Administration
(NASA), including Space Station Freedom and contemplated missions to the Moon and to Mars,
will require the use of advanced thermal control concepts to efficiently transport large amount
waste heat over long distances (Miller et al., [1]). These missions will require an active thermal
control system to provide moderate temperature heat rejection for different system modules. It is
essential that the thermal rejection system selected be able to operate under a variety of complex
and non-uniform heat flux distributions. Other requirements for the selected system include
minimum overall system mass, and pumping power (Ungar et al., [2]). The high heat flux
potential and low mass requirement of the two-phase thermal control system makes them an
attractive option for advanced space applications.

Before a two-phase thermal control system can be implemented in the space project, there
are several phenomena that must be clearly understood. Among the many important aspects of
two-phase thermal control and transfer systems meeting further study are the two-phase pressure
drops and the two-dimensional (2-D) heat transfer coefficient distributions in smooth and
enhanced tubes for various gravity levels including normal earth gravity, zero gravity, lunar
gravity, and Martian gravity (Reinarts et al. [3], and Ungar et al., [2]). For the case of normal
earth gravity, this study investigates 2-D wall temperature variations, and mean heat transfer
coefficient variations as a function of applied power. Other gravity conditions will be considered
in future studies. _

Recently, increased emphasis has been placed on understanding the pressure drop in two-
phase flows in earth, low gravity lunar, and Martian environments. Ungar et al. [2] and Reinarts
et al. [3] studied the pressure drop and flow profiles for lunar-g and Martian-g two-phase flow.
They have developed an extensive data base for these two reduced gravities and have
recommended correlation’s for two-phase pressure drop under these conditions. Miller et al. [1]
reviewed many two-phase frictional pressure drop prediction methods for smooth tubes under

normal and microgravity conditions. For qualities greater than 0.05, they recommended
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Troniewski and Ulbrich’s correlation. However for qualities less than 0.50, the Lockhart-
Martinelli/Chisholm correlation was recommended.

Another important aspect of two-phase thermal control system is the development and
understanding of fundamental characteristics of flow boiling heat transfer at different gravity
levels. In particular, optimization of the heat transfer, with accompanying reduced mass and
pumping power requirements, will require a knowledge of the two-dimensional heat transfer
coefficient distributions in advanced and commercial space systems (Boyd et al., [4]).
Implementation of two-phase thermal control system will also require additional emphasis on
flow boiling phenomenon as it pertains to non-uniform heat flux distribution, resulting heat
transfer coefficients, flow channel aspect ratio, and orientation.

From the literature review, it is clear that progress is being made on the prediction of
pressure drop for two-phase thermal control systems for various gravity levels and flow
conditions. However, the same cannot be said for the local heat transfer coefficients for two-
phase flow boiling. There has been much work completed for the two-phase heat transfer
correlations for a uniform heat flux distribution. Correlations presented by Kandlikar [5], Shah
[6], Gungor and Winterton [7], and Boyd and Meng [8] cover different fluids, vast ranges of flow
rates, the entire spectrum of quality, and low and high subcooling. The former three correlations
were only recommended for saturated flow boiling and the latter for subcooled flow boiling.
These correlations are valid for only smooth tubes, and one must avoid using them when
orientation is important. The former three correlations were derived from the data collected form
horizontal flow boiling, where as the latter for high Froude number (> 50.0). Recently, several
researchers have considered the effect of heat transfer enhancement devices (fins, and twisted
tapes) and have presented correlations, but most of these are again for horizontal flow boiling or
condensation on horizontal tubes. Patankar et al. [9], Wen et al. [10], and Jaber et al. [11], ha\;e
studied the effect of fins on the heat transfer coefficient for condensation. While Wen et al. [10]
presented experimental data to facilitate theoretical model development of heat transfer
coefficient for condensation on horizontal integral-finned tubes, Jaber et al. [11] found that the
condensation heat transfer coefficient can be increased by up to 280% for copper if commercially
available enhanced tubes are used in condensers over smooth copper tubes. He also looked at

cooper alloy tubes and found that heat transfer is enhanced by an average of over 30% with
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finned tubes relative to smooth tubes. Boyd et al. [4], Smith [12], and Turknett [13] have studied
the flow boiling in horizontal channels with uniform and top-side heating with and without
enhancements. They made measurements of the two-dimensional axial and circumferential wall
temperature distributions, and presented results for the axial distribution of the heat transfer
coefficient for four internal tube configurations.

The literature search suggests that: (1) there is a lack of local experimental data and local
heat transfer correlations for an external single-side heat flux distribution, and (2) very few
studies have been completed on investigating the flow aspect ratio, and orientation effects for
uniform and non-uniform heat flux distributions.

In addition to the advanced space system, single-side heat flux boundary conditions
appears in many other applications. Such advanced applications include high heat fusion
components, high heat flux electronic components, in-tube boiling systems, boilers, condensers,
and heat exchangers. Therefore, advanced applications requiring flow boiling will necessitate
better characterizations of the local 2-D heat transfer variations for single-side heated conditions.

For optimized 2-D two-phase thermal management systems to become a reality, extensive
efforts are needed to collect and correlate experimental data for heat transfer correlations for
complex heat flux distributions. This is the long-term objective of future funded work which is
directly related to the present study. The long-range scope of this study includes making 2-D wall
temperature measurements as function of mass velocity, inlet subcooling, tube diameter, tube
internal geometry, tube orientation, gravity level, and heating configuration. The anticipated
Freon-11 mass velocity and tube diameter range between 95.0 and 1,300.0 kg/mzs, and between
9.5 and 25.4 mm, respectively. The tube inside wall configuration will include smooth wall,
finned wall, and combined twisted tape and finned walls. In the present work, we present an
example of 2-D outside wall temperature measurements made with subcooled Freon-11 ﬂowifig
downward in a smooth vertical channel with single-sided heating. These wall temperature data
were then used to obtain circumferentially and axially averaged heat transfer coefficients.

Finally, comparisons were made with a similar flow in a horizontal channel (Boyd et al., [4]).
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2.2 EXPERIMENTAL SETUP

The system used to perform forced convection boiling experiments in vertical tubes
(downward flow), was based on the system initially developed by Boyd et al. [4] and later used
by Smith [12], Boyd [14], and Turknett [13]. Figure 11a shows the Freon-11 (R-11) vertical flow
boiling loop. This closed loop is constructed of stainless steel and copper, and opérates between
3.4 kPa and .17 MPa. The maximum power generation capability is 2.7 kW and the maximum
volume flow rate is approximately 2.97E-4 m3/sec. The Freon-11 is stored in a reservoir which is
filled using a chemical resistance centrifugal pump. After filling the reservoir, the R-11 is
circulated through the closed loop at the desired operating pressure and flow rate. By circulating
the R-11 before any data is recorded, any leaks in the system can be detected by using a halogen
leak detector. Then the desired inlet temperature is obtained by properly adjusting the
chiller/isothermal bath. The energy is transferred between the chiller and R-// by way of a
commonly connected heat exchanger. During testing, the outlet temperature of the chiller is
adjusted to maintain a constant inlet R-// temperature for a given experimental run. The working
fluid for the chiller is a 60/40 ethylene glycol-distilled water mixture.

A description of the closed flow loop and the function of its components is instructive.
The R-1] flow from the reservoir the filter, where all the contaminates are removed before the
fluid enters the positive displacement pump. The positive displacement pump requires a net
positive suction of at least 0.02 MPa. This pump was selected for durability. After leaving the
pump, the fluid passes through the pulsation damper. The damper reduces the pressure and flow
oscillations. The pressure fluctuations are also minimized by using the pneumatically controlled
metering valve. Exiting the control valve, the fluid flows to the heat exchanger, where its
temperature is set at a desired value by adjusting the chiller parameters. Aﬁer exiting the heat
exchanger, the fluid passes through the turbine flow meter and enters the unheated “flow
developing” section or upstream part of the test section which has a length greater than forth (40)
times the test section diameter. The fluid then enters the heated section of the test section. A
downstream pneumatically controlled valve is used to control the test section exit pressure. The
heated fluid then passes through another heat exchanger where the energy generated is removed
pﬁrtially by using tap water. Finally, the fluid flows back to the reservoir and the flow cycle is

complete.
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2.3 TEST SECTION DESCRIPTION

The test sections used in this experiment are the same as used by Boyd et al. [4]. The test
sections are 2.235 m long copper tubes (see Figure 11b), and consists of two parts: (1) Upstream
unheated section to facilitate flow development, and (2) A downstream single-side heated
section. For the present case, the inside diameter (D) was 25.4 mm and the outside diameter was
28.5 mm.

The heated section has a smooth inside surface. The test section is heated with heater
tapes which vary in width based on tube diameter and are 1.22 m long. Each tape has power
generation capacity of 2.66 kW. The test section was designed with flexibility and ease of
replacement in mind. Although, the pressure losses due to union connector at both top and
bottom ends of the test section are assumed to be small, computations and additional
measurements, will be performed later to estimate these losses. The entire test section was
insulated to minimize the heat losses. In addition to the primary two parts of the main test
section, each part had pressure-temperature measurement ports upstream and downstream of the
test section.

The heated part of the test section was divided into seven .203 m axial intervals. At each
of the axial locations there are seven thermocouples installed circumferentially at 0, /4, 3 n/8,
n/2, Sn/8, 3n/4, and w, and degrees (see Figure 12), with 0 being at the top heated portion of
vertical symmetry plane in Figure 12. This test section thermocouple arrangement will allow
better circumferential resolution of the wall temperature variation than previous test sections
(Boyd, [14], Smith, [12], and Turknett, [13]) because seven circumferential locations are used
rather than four. ‘

The thermocouples were installed by using high thermal conductivity epoxy. Special care
was taken when thermocouples were adhered to the tube. The thermocouples beads were placed
in good contract with the tube so that as little epoxy as possible was used. Based on repeated
measurements (forty) of the epoxy thickness between the thermocouple and the copper tube, the

mean thickness was 0.194 mm, and the standard deviation was 0.007 mm.
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2.4 DATA REDUCTION ANALYSIS

Forty-nine (49) local temperature measurements were made on the outside surface of the
heated portion of the test section for each experiment. These outside temperatures must be related
to the inside wall temperature in order for us to calculate the inside heat transfer coefficient. Two
techniques will be used to reduce the wall temperature data: (1) the heated thermal hydraulic
approach (Boyd et al., [4]; see Figure 13), and (2) a multi-dimensional inverse conduction
analysis using numerical finite element computation code called ANSYS.

The initial data reduction is based on the heated hydraulic approach used by Boyd et al.
[14]. In this analysis, we compute circumferentially averaged heat transfer coefficient from
circumferentially averaged wall temperature. The circumferentially averaged temperature is
computed from the seven wall temperature measurements made on copper tube outside surface at
each axial location by using the piece-wise linear approach used by Reid et al. [15]. Using their
approach, the circumferentially averaged outside wall temperature can be related to the seven
circumferential measured temperatures (T, at 0 degrees, T,, at n/4, T,; at 3n/8 etc.) by
equation (1) given above. The temperature T,, was used with the model presented by Boyd et al.

[4] to account for temperature drop across channel walls, and convective and radiative heat losses

to the surroundings. Using this model, the mean heat transfer coefficient (hy) at a given axial

location was obtained.

The uncertainties for each measurement in this experiment are as follows: (1) for
geometric measurements, + 0.001 mm; (2) for voltage, £ 0.05 mV; (3) for current, + 0.005 mA,;
(4) for pressure, £ 0.7 Pa; (5) for flow rate, + 6.3E-7 m’/s; (6) for temperature, + 0.17 °C. The
resulting uncertainty in heat transfer coefficient was estimated by Boyd et al. [4], and Huque et

al. [16] to be less than 10 percent.

2.5 RESULTS

For a 25.4 mm inside diameter single-side heated test section, results are presented for a
mass velocity (G) of 210.0 kg/m’s, an inlet temperature of 22.6 °C, and an exit pressure of
0.1843 MPa (absolute). The results include: (1) 2-D (axial and circumferential) wall temperature
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distributions; (2) Axial distributions of mean wall temperature (circumferentially averaged); and

(3) Axially and circumferentially averaged mean heat transfer coefficient distributions.

2-D Wall Temperature Distribution

Figures 14a-14g, and Figure 15, show the distributions as measured outside wall
temperature at different circumferential and axial locations. The wall temperature increased as
the fluid flowed from upstream to downstream (axial locations #1 to #7) in the test section.
Furthermore as ¢ varied from 0 to =, the temperature decreased circumferentially because of a
change from a circumferentially heated region (¢ = 0 ton/2) to a non-heated one (¢ = 57/8 to 7).

This change in temperature can be observed clearly in Figure 15. This figure shows the
axial distributions for the wall temperature for. seven circumferential locations, as well as the
circumferentially averaged wall temperature (dotted line). From these figures, it can be seen that 7
the wall temperature distributions are closely spaced for ¢ = 0 to n/2 and ¢ = 5n/8 to m. This is to
be expected because of single-side heating. From the plots, one can also observe that the wall
temperature at ¢ = 0 remains above the saturation temperature (Tsat = 41.65 °C) and the wall
temperature at ¢ = 5n/8, 3n/4, and ©t were consistently below Tsat.

Although the data analysis is continuing, preliminary computations using the Davis-
Anderson correlation (Davis and Anderson, [17]) indicate that the onset to nucleate boiling
occurs at a wall temperature of 44.1 °C. For the computations, all Freon-11 properties were
evaluated at the saturation temperature using Perry’s handbook [18]. Using this computation as a
basis and the basic characteristics of the boiling curve, both axial and orientation influences on
the quasi-boiling curve are displayed in Figuré 14a through 14g. Figure 14a (¢ = 0.0 degrees)
through Figure 14d (¢ = 90.0 degrees) show that the onset of nucleate boiling (ONB) does occur
slightly above 41.7 °C simultaneously over the heated section from ¢ = 0.0 to 90.0 degrees. For
the conditions shown, this occurred at a power below 181.2 W simultaneously at all axial
locations between locations #2 and #6 but at different outside wall temperatures. Similarly, the
onset to fully developed boiling (OFDB) oécﬁrred simultaneously at all these locations at a
power level of 181.2 W. Although further data reduction is needed to determine actual inside
wall temperatures, it is clear from the figures that the boiling curve will shift to the right with

higher values of Z. The data also show a slight increase in [T, ], (outside wall temperature) in
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the circumferential direction from ¢ = 90.0 degrees to 0.0 degrees. These data provide a
quantitative record which shows the regions or patches where various simultaneous boiling
phenomena occurred. Even though the test section was made of highly conducting copper, the
measured outside wall temperatures cannot be used directly to correlate ONB or CHF. However,
these measurements are closely linked to the local variations of the inside wall temperature and

hence are related to the local two-dimensional boiling heat transfer at the inside wall.

Heat Transfer Coefficient

Once the local wall temperature distribution was obtained, the mean (circumferentially
averaged) wall temperature was computed and this temperature was used in the heated thermal
hydraulic approach (Boyd et al., [14]) to obtain the circumferentially averaged heat transfer
coefficient for each axial location and for different power levels. Then, this circumferentially
averaged heat transfer coefficient (hy,;) was used to obtain overall (circumferentially and axially
mean) heat transfer coefficient using the equation (2), which is based on a linear piece-wise
approximation between each axial location. The 1st and the 7th axial locations are not included
due to end losses. Hence, the axially and circumferentially mean heat transfer coefficient was

defined as

hm2 + 2hm3 + 2hm4 + 2hm5 + hm6
8.0 '

h=

)

The mean heat transfer coefficient distribution for the mass flow rate of 210.0 kg/m’s is given on
Figure 116. From the above discussion of wall temperature distribution, the OFDB occurred at
poWer level of 181.2 W, and the critical heat flux occurred between ¢ = 0.0 and 90.0 degrees at a
power level of 212.7 W. This can be confirmed again from the mean h distribution given in
Figure 16. It is clear from Figure 16 that, at the OFDB, there is an increase in the mean h which
occurs at a power of 181.2 W. This agrees with the above noted predictions using the Davis-
Anderson correlation.

Since the flow channel is heated from one side, the CHF occurred locally in a small
circumferential angular interval A¢ directly below the heater and extending from ¢ = 0 to ¢ = A¢.

As the power level is increased, A¢ increases and the ONB occurs is denoted by ¢onp, then the:
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(1) single-phase flow regime occurs in the region where ¢ > donp, (2) stable nucleate boiling
regime occurs in the region A¢ <¢ < ¢onp, and (3) stable film boiling regime occurs for ¢ < Ap.
A similar condition was postulated by Boyd et al. [20] and similar observations were recently
observed by Marshall et al. [21] who used water as the working fluid. This stable circumferential
distribution seems to be preserved by energetic mixing and flow regime interaction. The result of
this stable flow is a continual increase in h with power (see Figure 16) until a second and less
pronounced CHF occurs. Figures 14a through 14f show that this occurred at a power level of
about 500.0 W, which is more than a factor of two above the first CHF.

Figure 16 also compares the overall h obtained for a vertical channel from the present
work with similar results for a horizontal channel, which was obtained by Smith [30]. Smith;
results for h had to be updated (see Boyd et al., [4]) from the reported circumferentially and
axially averaged heat transfer coefficients. Direct comparisons with our mass flow rate of 210.0
kg/mzs cannot be made because of different mass flow rates for horizontal channel. Efforts are on
the way to run cases with identical flow rates so quantitative comparisons can be made.
However, qualitative comparisons can be made with the horizontal flow case of 184.84 kg/mzs.
The heat transfer coefficient, h, increases with power for both cases, but the peak value of h for
the horizontal flow (Top-Heating) near the second CHF (ultimate CHF) is almost twenty percent
less than that obtained for the vertical. This difference can be attributed to the difference in mass
velocity to some extent, but further investigation will indicate the extent of this contribution. The
present results for the horizontal case indicate that the mass velocity influence on h is small in
the range between 92.0 and 184 kg/mzs, which implies that the difference shown in Figure 16
between the horizontal and vertical flow is due to principally the orientation differences. Finally,
the power level at which the second CHF occurred for the horizontal flow is more than forty
percent less than that for the vertical flow.

As stated before, the circumferential measurement of wall temperature was made at seven
circumferentially locations rather than four as used by Boyd et al. [4], Smith [12], and Turknett
[13]. The effect of selected locations for the circumferential temperaturel measurement on mean
heat transfer coefficient is given by Figure 17. Shown are plots of h as a function of power when
seven and four circumferential measuremenf locations were used. It is clear that the more

circumferential measurement locations used for the temperature, the more accurate the value of
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the mean h and better the resolution for later determinations of local variations in the heat
transfer coefficient. But if for cost or geometric restrictions of the channel only four
circumferential temperature measurements can be made, what are the best locations which will
result in a good estimate for h? The results in Figure 17 show that the circumferential locations
used by Boyd et al. [4], Smith [12], and Turknett [13] resulted in the best agreement with the
case where seven circumferential locations were chosen (present work). Further efforts are
needed to obtain the local (axial and circumferential) heat transfer coefficient using a non-linear

inverse conduction approach (Huque and Boyd, [19]).

2.6 SUMMARY

In this work, 2-D (circumferential and axial) wall temperature measurements, and
circumferentially-and-axially averaged heat transfer coefficient (h) distributions were presented
for the forced convection boiling of Freon-11 in a single-side heated vertical channel with
downward flow for a mass flow rate of 210.0 kg/m?s. Experimental data was obtained for 2-D
wall temperature distributions and axial distributions of mean wall temperature (circumferntially
averaged), which was reduced to obtain h.

This work confirms recent observations by Marshall et al. [21] and previous postulations
by Boyd et al. [4]. It shows that the effects of single-side heating are to allow multiple levels of
critical heat flux to occur before the channel wall is no longer wetted by liquid phase.

Additional work is needed to extend the results to wider ranges of G, inlet temperature,
heating configuration, and D so that: (1) further comparisons can be made with horizontal flow,
(2) local and mean variations in the heat transfer coefficient can be obtained, and (3) a basis can
be established for testing existing and new correlations, as well as forced convection and flow

boiling numerical models.
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3.0 SUBCOOLED FLOW BOILING IN SINGLE-SIDE HEATED
VERTICAL CHANNELS WITH DOWNWARD FLOW; PART I:
THE EFFECT OF ORIENTATION BASED ON THE AVERAGED
HEAT TRANSFER COEFFICIENT

3.1 INTRODUCTION AND LITERATURE SURVEY

Flow boiling is the most commonly used heat transfer technique in industry. Industries such
as aerospace, nuclear, power generation, chemical processing, and electronics use flow boiling
heat transfer processes to transport large quantities of power at fairly low wall temperatures.

Due to extensive use of flow boiling heat transfer in industries, basic features of the boiling
phenomena have been extensively investigated for more than sixty (60) years, and large data base
encompassing a variety of fluids with wide ranges of pressure and flow rates have been
developed and correlated.

Most widely quoted flow boiling heat transfer coefficient (h) correlations have been
developed from large data banks for vertical upflow with the majority of the data being in the
vapor quality range from 0.0 to 0.5. These include correlations by Chen [22], Shah [23], Steiner
et al. [24], and Winterton and his coworkers [25 - 27]. Some of these correlations have also been
extended to flow boiling inside horizontal tubes. There are several weak points in this approach.
First of all, above the stratified flow threshold criterion, it is assumed that there is no tube
orientation effect on heat transfer. Below the threshold, there is a reduction in h because the tube
circumference is only partially wetted with liquid and dry at the top. This reduction in h is
predicted by adding an empirical correction term to the vertical tube correlation. However, these
empirical corrections have been developed by statistical regression to improve the fit of the
vertical tube correlation to the horizontal l;ube boiling data bank rather than by a direct
comparison of experimental test data for vertical and horizontal flows at the same local test
conditions. Consequently, effects other than stratification may be involved. Hence, these
potentially important other effects (which could include other stratification influences; e.g. due to
reduced gravity) will be manifested as weak influences in existing design correlations for

horizontal tubes.
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Several researchers have used the threshold criterion in their correlations for both vertical
and horizontal flow. The most widely used stratified threshold criterion for applying vertical flow

boiling correlations to horizontal flows is the liquid Froude number, defined as
Fr,=G’/[gD p’L]. 3)

For Fry, < 0.04, Shah [23] recommended that both the convective boiling and nucleate boiling
heat transfer coefficient be determined by separate correlations. Gungor and Winterton [26] on
other hand defined the threshold for Fry to be 0.05. In addition, they modified both the
convection enhancement factor (F) by multiplying by a factor E, and boiling suppression factor

(S) by multiplying by a factor E,. Both E, and E, have a reducing effect and are given by

E, = Fr, 01 2Fr ]

Q)

El = FI'LO'S

Using a Shah type correlation, Kandlikar [28] developed a new correlation which retained
the Shah threshold value of 0.04. More recently, Kattan et al [29] obtained experimental data on
flow regimes and the threshold between stratified and unstratified flow. They found that the
liquid Froude number criterion (Fr; = 0.04, 0.05, etc.) used by many flow boiling correlations is
incapable of delineating the transition between stratified and unstratified flow data of
refrigerants, and called the use of vertical tube correlation to model heat transfer in horizontal
tubes “questionable.”

Until recently very few researchers have investigated the effect of orientation based on
fundamental flow analysis. Recently, Kattan et. al. [29] studied orientation effects for R-134a
flow boiling in horizontal flow, vertical upflow, and vertical downward flow using a 12 mm
diameter tube over wide ranges of mass velocities, vapor qualities and heat flux. They found a
significant effect of flow direction on local heat transfer coefficient. The experimental data
showed that the horizontal tube heat transfer coefficients ranged from 47% to 38% below those

for vertical upflow. The vertical downflow data were significantly below the data for h for both
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horizontal flow and vertical upward conditions. The lower coefficients for downflow compared
to upflow and horizontal flow were not expected by Kattan et. al. [29], and they tried to explain
this by hypothesizing that buoyancy effects of vapor, which opposes downward flow may reduce
its accelerating effects on the liquid and hence diminish the convective contribution to heat
transfer. The lower heat transfer coefficients for horizontal tube as compared to vertical upward
flow at low flow rates can be explained as a result of flow stratification in the horizontal tube. As
they observed, these differences between horizontal and vertical upward flows diminish and even
reverse in nature as the heat flux and quality increase.

One other fundamental difference between the boiling in upflow, downflow, and horizontal
flow which can have significant effect of heat transfer was also hypothesized by Kattan et. al. as
the subcooling effect of the pressure gradient on the process. Very recently, Kirk et. al. [30]
looked into the effect of low-velocity subcooled flow boiling at various orientations for R-113
flowing in rectangular channels. They found that at very low velocities where buoyancy is
dominant, the effect of orientation is very pronounced. In low-velocity domain, and as the
channel is rotated from horizontal position to the vertical upflow position, a significant
enhancement of heat transfer takes place at low levels of heat flux with enhancement diminishing
as heat flux is increased. They also found that a limiting flow velocity exists beyond which the
orientation and gravity can be completely neglected. Both the studies by Kattan et al. and Kirk et
al., establishes the fact that the effect of flow velocity on heat transfer is very much dependent on
flow orientation and has some surprising influences.

From the discussion above, it is clear that the efforts have just been started in understanding
the orientation effects on heat transfer and we have a long way to go. In this work, we extend the
previous studies to include single-side heated channels for downward and horizontal flow.
Efforts will be made to study the effect of flow orientation using fundamental flow analysis by
comparing quasi-boiling curves and heat transfer coefficients for identical flow conditions for a

top-side heated horizontal flow and a single-side heated vertical downward flow.
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3.2 RESULTS

One of the objectives of this work is to study the effect of flow orientation on flow boiling
heat transfer in single-side heated geometries. In order to accomplish this goal, two independent
sets of experiments were ran. One setup was to study horizontal flow boiling heat transfer under
top-side heating conditions, and the other to study vertical downward flow boiling heat transfer
under single-side heating conditions. Although we refer to the channel surface in this paper as
being smooth, its surface conditions can be described as: “as received.” However, all test sections
were thoroughly cleaned with cotton and steel wool. The detailed description of the experimental
flow boiling loop, test sections used, and the experimental procedure are explained in detail for
both the setups in Section #1, and elsewhere [12]. The readers are also referred to the above
references for the procedure of data reduction analysis and thermal modeling which is used to
obtain the heat transfer coefficients.

In this work, the results for the three experimental test cases will be presented which were
run under identical flow conditions for both horizontal and vertical downflow. The complete 2-D
(axial and circumferential) wall temperature distributions, and axially and circumferentially
averaged heat transfer coefficient (h,,) distributions will be presented for Freon-11 flowing in a
25.4 mm inside diameter (I. D.) tube, with a mass velocity (G) of 184.0 kg/mzs, an inlet
temperature of 22.6 °C, and an exit pressure of 0.1843 MPa (absolute). For the same inlet
temperature and exit pressure conditions given above, only axially and circumferentially
averaged mean heat transfer coefficients will be presented for Freon-11 flowing in 19.1 mm, and
12.7 mm I. D. (D) tubes with mass flow rates of 246.45 kg/mzs and 520.78 kg/mzs, respectively.
Finally, the single-side heating configuration for both orientations consist of: (1) a heated section
for the circumferential coordinate (¢) between -90.0 degrees to + 90.0 degrees, and (2) an
unheated insulated section for 90.0 degrees < ¢ < 270.0 degrees. For the horizontal channel, the
heating is top-side heating with the plane of symmetry being vertical. The axial coordinate (Z) is
measured from the beginning of the heated section, where the flow is hydrodynamically fully
developed at Z = 0. The heated length was 1.22 m.

Figures 18a-18d show the distributions as measured outside wall tempefature at different

circumferential and axial locations for both horizontal and vertical downward flow. The Vertical
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flow temperature profile is given by solid lines and horizontal by dashed lines. For the vertical
downward flow, the wall temperature increased as the fluid flowed from upstream to downstream
(axial locations #1 to #7) in the test section. Furthermore as ¢ varied from 0 to =, the temperature
decreased circumferentially because of a change from a circumferentially heated region =0to
n/2 ) to a non-heated one (¢ = n/2 to n). The similar trends can be observed for the horizontal
flow case, but here the wall temperature first increased as the fluid flowed from upstream to
downstream, axial locations #1 to #4, but later decreased significantly for axial locations #5 to
#7. This decrease in the wall temperature for the downstream axial location is not attributed to
any physical phenomenon unique to the top-side heating case, but rather it is due to the
experimental setup [12], where the chiller which was used to regulate the inlet temperature to the
test section was located just after the exit of the test section. This placement of the chiller causes
the wall temperature at the axial locations #5, #6 and #7 to be significantly lower than other
upstream locations. Accordingly, we have restricted our discussion to axial locations #2 through *
#4 for the horizontal flow case. From the figures, one observes that the wall temperatures at ¢ = 0
remain above the saturation temperature (Tsat = 41.65 °C) for most power levels and below Tsat
regardless of the flow orientation for ¢ = 3n/4 and  at all except the highest power levels for Z <
0.6 m.

The onset to nucleate boiling (ONB) was estimated using the Davis-Anderson correlation
[17]. For the experimental specifications shown in Figure 18a-18d, the ONB was estimated to
occur at an inside wall temperature (ONB) of 43.2 °C. Since this temperature cannot be
compared directly with the measured outside wall temperatures (T,,,) shown in Figure 18a-18d, it
can serve as a lower bound for the outside wall temperatures (ONBO) at which ONB occurred at
different axial locations. Using ONB as one indicator and the shape changes of the measured net
power (P) versus T, curve, some qualitative descriptions can be made about the evolution of the
two-dimensional boiling front with respect to flow orientation for single-side heated channels.
From Figure 18a-18d, clear evidence of the orientation effect is manifested by T,, for the
horizontal flow boiling being consistently above that for vertical flow for Z > 0.2m and all values
of ¢. As demonstrated in Figure 19, this has the effect of reducing h,, for the horizontal

orientation when compared to the vertical flow. At higher power levels above 400.0 W for the
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horizontal flow, there appears to be rewetting phenomenon which is initiated and then disappears
as the power was increased.

In Figure 19, G is increasing and D is decreasing from case to case. However, the Reynolds
number for the two largest values of D are almost identical. Although variations of h,, with
power are different for the two cases, there are some similarities. When one take into account
that the L/D are quite different for the two cases, it indicates that a better correlation and
comparison could be made by comparing the axial distributions of the circumferentially averaged
heat transfer coefficient. For a fifty percent increase in the Reynolds number, h,, for the
horizontal flow increased by a factor of two in some cases and actually exceeded h,, for the
vertical downward flow. The present work will be expanded later in a second part to include the

effects that both single-side heating and orientation have on the axial distribution of the heat

transfer coefficient.

3.3 SUMMARY

In this work, results have been presented for identical test runs for horizontal top-side heated
flow, and vertical downward flow to study the effect of orientation on heat transfer data. The
results show that horizontal flow heat transfer data is significantly lower than vertical downward
flow data, which is the opposite relationship observed for uniformly heated flow channels.
However, as both the Reynolds number and heat flux increase, the relationship changés. This
study should be extended to investigate these effects further by comparing the axial distributions

of the heat transfer coefficient.
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4.0 SUBCOOLED FLOW BOILING IN SINGLE-SIDE HEATED VERTICAL
CHANNELS WITH DOWNWARD FLOW; PART II: COMPARISONS
WITH SELECTED TWO-PHASE CORRELATIONS

4.1 INTRODUCTION

Subcooled flow boiling can accommodate high levels of heat flux in a variety of diverse
processes and applications such as advance space thermal management systems, plasma-facing
fusion components, electronic and computer components, and manufacturing and material
processing.

Subcooled flow boiling heat transfer is a complicated phenomenon involving many factors,
among which heat flux distribution on the channel wall is an important one. Beside the heat flux
distribution, there are many different variables which influence the flow boiling heat transfer.
These variables include pressure, mass flow rate, quality, thermophysical properties, wall
material, surface characteristics, and channel geometry. A clear understanding of the influence of
different variables on heat transfer during single-phase flow may be obtained through analytical
equations and well established empirical correlations, but flow boiling heat transfer is more
complex due to interactions between the two phases with the channel in the presence of both
convective andboiling modes of heat transfer. However by introducing reasonable physical
abstraction, it is sometimes possible to greatly simplify the problem and to obtain acceptable
results.

In the past, one of the first simplifying assumptions made to advance the two-phase flow
boiling theory was to study heat transfer in uniformly heated tubes. This simple geometry was
used usually to: (1) decrease the experimental complexity, (2) directly use previous single-phase
data as a basis to isolate the boiling contribution, and (3) to avoid the inclusion of the complexity
of circumferential heat flux variations on the channel inner wall. From the literature, it is clear
that there has been much work completed for flow boiling heat transfer correlations for a uniform
heat flux distribution. Correlations presented by Chen [22], Shah [23], Kandlikar [5], [28],
Steiner et.al. [24], Winterton and his co-workers [25, 26] and Boyd and Meng [8] cover different

fluids, vast ranges of flow rates, the entire spectrum of quality, and low and high subcooling.
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Some of these correlations are recommended for both saturated and subcooled flow boiling.
These correlations are valid for only smooth tubes, and one must avoid using them when
orientation is important.

As stated above, several researchers have proposed correlations for the prediction of heat
transfer coefficients in flow boiling systems. But to simplify the heat transfer modeling and
reduce the experimental complexities, most of the research efforts have been limited to heat
transfer correlation for uniformly heated channels. In addition, very little effort has been made to
study heat transfer in complex and non-uniform heated channels.

In this work, the results of flow boiling heat transfer in non-uniform or single-side heated
tubes will be presented, and the experimental heat transfer coefficients will be compared with
selected existing single-phase and two-phase flow boiling correlations. In order to establish a
basis for the comparisons with data for the single-side heated channel, base-line comparisons for
uniformly heated channels will be made with data from: (1) the literature, and (2) from the same
flow loop used to produce the single-side heat flux data but with uniformly heated wall
conditions. Among the two-phase correlations which will be considered are heat transfer
correlations for uniformly heated tubes developed by Shah [23] and Liu and Winterton [25].
Using the results from the above comparisons, we will: (1) assess these correlations and data for
the uniform heat flux case, (2) adapt the correlations to the single-side heat flux case, and (3)
determine whether more fundamental correlation development work is needed for the single-side

heated configurations.
4.2 CORRELATION DESCRIPTION

One objective of the present work is to explore an initial basis for comparisons with heat
transfer data in single-side heated channels. As this work is primarily geared toward non-uniform
and single-side heat flux boundary conditions, some tests were run under uniform heat flux
conditions to provide a baseline check for our single-side heated work. These will be compared
first with existing correlations, and then these correlations will be extended to the single-side

heated experimental data.
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Based on both the criteria of satisfying the range of our experimental parameters and
simplicity (or ease of use), two correlations were selected for the comparisons with our single-
phase experimental heat transfer data. Accordingly, two different additional correlations were
selected for comparisons with the two-phase heat transfer data. Because they are frequently used
by many designers and researchers in a variety of engineering fields, the two single-phase
correlations selected were: (1) the Dittus-Boelter correlation, and (2) the Petukhov correlation.
The two correlations selected for two-phase comparisons were: (1) the Shah correlation, and (2)
the Liu-Winterton correlation. A brief description of each of the correlation, along with the

procedure of its use, is given below.

Dittus-Boelter Correlation: This correlation is one of the most widely used single-phase heat

transfer correlation. The correlation is given below as
h, = 0.023 Re*® Pr™ (/D). (5)

In this correlation, all the thermophysical properties are evaluated at liquid bulk fluid

temperature.

Petukhov’s Correlation: This correlation is also one of the most widely used single-phase heat
transfer correlation, and is considered to be more accurate than the Dittus-Boelter correlation.

Petukhov’s correlation is given by

©)

hy_ g pe (”—)"(k ! D).
T2 o

w

K+ K242 (pr3 1)
f =(182logRe— 1.64) 72
Ki(f)=1+34f
K,(Pr)=117+18Pr71/3

10% <Re <50 x 10°
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05 <Pr <2000

0.11, for liquid when Tw > Tb

0.25, for liquid when Tw < Tb
n=
0, for gases and constant heat flux

boundary conditions.

In the above correlation, all the thermophysical properties are single-phase liquid properties and

are evaluated at the film temperature, (T,, + Ty)/2.

Shah’s Correlation: Shah’s correlation is expressed as

h _
%=[f](Bo)—l +x/x‘] @
1
where
230B0%3, Bo>30x107°
f1(Bo) = 05 s
1+46B0%°, Bo <30 x 10
C
AN ot LI W

hyirg

where h; is the single-phase heat transfer coefficient. The Dittus-Boelter correlation was
suggested for h;. In the above correlation, all the thermophysical properties were evaluated at
bulk fluid temperature. The standard deviation for this correlation was + 30% over 97% of all the

data points.
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Liu-Winterton Correlation: The Liu-Winterton correlation was developed for vertical tube

flow and is in the form of asymptotic equations, which were correlated using over 3,000 data
points. The standard deviation for this correlation was + 25% over the entire range of data.

Their correlation for saturation boiling is given by

Wi = (W F)? + (hpoorS)? ®)

where h; was evaluated from the Dittus-Boelter correlation. The nucleate boiling heat transfer

coefficient, hyg, was evaluated with Cooper’s correlation, which is given by

Rpoot =55 PrO12 qé(—log Pr) 7035 405, ©)
The F and S factors are defined as

F=[t+xP(o, /o) -1]]">, (10)
and

S = (1+0055 F* Re®16)~1, an

For subcooled boiling, eq. (8) was modified by the authors because the driving temperature
differences for nucleate boiling and for forced convection are different. Therefore for subcooled

flow boiling, Liu and Winterton replaced equation (8) with
2 2 2 12
q° =(F hl ATb) +(§ hpoolATs) (12)

where
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AT, =T, -T,and ATy =T, ~T;.
For subcooled flow boiling, all the other equations remain the same; but the quality (x) is set to

zero and hence F=1.0. Eq. (11) is still used to evaluate S. As in our case, the temperature

difference AT, is unknown. Therefore, the two-phase heat transfer coefficient was given as

htp=q/ATb (13)

where AT}, is obtained from the following equation

T~

ATy =
I+ A%

[1 U+ 1+ A2gp) (A2 - 1))], (14)

and

App = (F 1) (S Bpoor),
and

Agp=q/(S hpoot (Ts ~Tp ))-

In this correlation except for the liquid Prandtl and liquid Reynolds numbers which are evaluated
at the bulk temperature, all other thermophysical properties were determined at the saturation

temperature.

66



L
[

'
i



(N

Yy i

{li ]

r
[

{0 Lt

()

!
o

G

4.3 EXPERIMENTAL SUMMARY

A series of experiments were run to obtain the heat transfer coefficient axial distribution for
both the uniform and single-side heating configurations. The detailed description of the error
analysis was presented elsewhere (Boyd, [14]).

The results for two experimental test cases will be presented. These cases involve both
uniform and single-side heating configurations under identical flow conditions. The results will
be presented for Freon-11 flowing in a 25.4 mm inside diameter (I.D.) tube, with mass velocity
(G) of 210.0 kg/m’s, an inlet temperature of 22.6 °C, and an exit pressure of 0.1843 MPa
(absolute). The external heated surface area for the single-side heated case was 0.0512 m’. The

outside diameter of the heated channels was 28.4 mm.
4.4 RESULTS

Before the single-phase correlations were used for cornp.arisons with our experimental data,
they were compared with single-phase data produced by Chen and Tuzla [32] and Boyd [33].
These comparisons will also verify the correct usage of the correlations. As shown in Figure 20,
both correlations predict T,, within 10.0 °C, but the Dittus-Boelter correlation slightly
underpredicts T,,. Further, the Dittus-Boelter correlation gave better predictions for hy than the
Petukhov correlation which consistently overpredicted h, by approximately 20.0%. There may
have been some convergence difficulties in using Petukhov’s correlation with the present
predictions; this will be resolved in the near future. It is important to note that the Chen and
Tuzla water data was produced using a very low heat flux of 125.0 kW/m?. For comparison at
higher heat fluxes, Figure 21 shows that the Petukhov correlation has better success than the
Dittus-Boelter correlation. As Boyd and Meng [8] demonstrated, Shah’s correlation has good
predictability for high heat flux conditions in the fully developed boiling region when it is used
along with Petukhov’s correlation rather than the Dittus-Boelter correlation.

Figure 22, shows the comparison of our experimental data obtained at an axial location near

the middle of the test section with the above noted single-phase and two-phase correlations for
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both uniform and single-side heated boundary conditions. Since none of the correlations selected
thus far accounts for orientation, we anticipate only qualitative comparisons. Before the
comparisons are discussed, it should be noted that the effects of single-side heating was
accounted for by using a particular correlation as usual with the exception of using the thermal
hydraulic diameter (D,) as the characteristic length in place of the channel diameter (D). So that,
D, is given by

p, = 1s)
Py

where Py is the heated perimeter and A_ is the flow channel cross-sectional area. With this
definition of D,, one readily observes the effect of the different reference lengths in Figure 23 for

both a uniformly heated channel and the single-side heated channel. As shown in the figure, there |
is qualitative agreement with the data in the single-phase region and good agreement with the
Shah correlation in the two-phase region. For the single-side heated case, there is fairly good
agreement between all single-phase correlations and the data for Z between 0.203 and 0.416 m.
After the ONB, Figure 24 shows that there is better agreement between the data and the Liu-
Winterton correlation at upstream locations (Z < 0.4 m) and lower power levels. However for
increased values of Z between 0.4 m and 0.8 m or at higher levels of power, Figures 22 and 25
show that Shah’s correlation gave better predictions. At larger values of Z, all correlations

overpredicted the data (see Figure 26).
4.5 SUMMARY

When used directly in the single-phase regime, the Liu-Winterton correlation compared well
with the single-side heated Freon-11 data when D, was chosen as the characteristic length.
However, the Shah correlation characterized the data better in the two-phase region. Since all
correlations overpredicted the data near the exit of the test section for the two-phase region,
additional correlational development will be needed to completely characterize non-uniformly

heated circumferential effects. Finally, good agreement was obtained between the correlations for
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uniformly heated channels and water data under the following conditions: (1) for low heat fluxes
(q<125 kW/m?), the Dittus-Boelter is recommended for single-phase convection; (2) for high
heat fluxes (125 kW/m®<q<30,000 kW/m?), the Petukhov correlation is recommended for single-
phase convection; and (3) for high heat fluxes, the Shah correlation is recommended for fully

developed subcooled flow boiling.
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5.0 TWO -DIMENSIONAL DATA REDUCTION APPLYING AN
INVERSE HEAT CONDUCTION (IHC) TECHNIQUE

5.1 INTRODUCTION

Flow boiling heat transfer is an efficient method of removing a large quantity of heat per
unit area under fairly low temperature difference. A large volume of experimental data are
available at the Thermal Science Research Center (TSRC) at Prairie View A&M University on
convection and flow boiling. For a various outside heat flux conditions on copper tubes several
temperature measurements were performed on th¢ outside of tubes. The working fluid used was
Freon-11 with various flow conditions.

7 A One-Dimensional (1-D) data reduction was performed (Smith [12]) to obtain the
circumferential averaged heat transfer coefficient at the inside of the tube from the available
temperature and heat flux data. An attempt was also made to obtain the circumferential variationv
of heat transfer coefficient by using finite difference numerical scheme (Meng [34]). The
problem is difficult because it is one of the boundary condition that is unknown and needs to be
determined from the known internal temperature data. One of the methods that can be used for 2-
D data reduction to obtain the circumferential variation of heat transfer coefficient is by applying
steady state Inverse Heat Conduction technique (IHC). This section presents some preliminary

results on IHC techniques.

5.2 IHC TECHNIQUE

Inverse Heat Conduction technique are becoming increasingly important tool for
mathematical modeling, thermal design and optimization of engineering systems, and
experimental data reduction. The development of this method is based on advances in
mathematical theory and computer technology. Inverse heat conduction problems are those
problems in which references on boundary conditions are made from a set of measured
temperature data. The TSRC experiments fall under this category where the heat flux on the
outside of the tube are known. Temperature measurements were made at some specific locations
on the outside of the tube. It is required to obtain the circumferential variation of the wall

temperature and heat transfer coefficient on the inside of the tube.
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The present method used was suggested by Naylor and Oosthuizen [35] with simple
modification for steady state conditions. The method is also similar to the method used by Dorri
and Chandra [36] to measure contact resistance variation with temperature.

In order to obtain the local heat transfer variation on the inner surface, the heat transfer
coefficients are assume;i to be defined in terms of a series of piece-wise function of N constant
values, h,, h,,...n, where each constant represent the locally averaged heat transfer coefficient
over a sub-region of the surface.

If the values of the constants h;, h,,...h,, are guessed, the corresponding variation of

temperature (TJ) at each of the measurement locations can be calculated. Note that the

experimental temperature variation (T,é,) at each of the measurement points is known. So, the

square of the difference between the calculated and measured temperatures, summed over all

thermocouples is then calculated as follows:

E-= g](TJ—TJ,)Z | (16)
=

where M is the number of measurement points. The superscript j refers to the measurement point
and is not an exponent.

The optimum local heat transfer rate distribution is then obtained by minimizing the sum
square root E with respect to each unknown coefficients:

Z 2% (ri-ri) 2

- 17)
d’l,' j=1 dii

Let Tgo be the calculated temperatures for an initial set of coefficients. The term

(TJ - T/},) is then linearized using a Taylor series as follows:

o .\ ori
(ré—7h) = (rdo — )+ ZE& b +

. . L (18)
ﬂAh2+...+ﬂAhN
20 Sy

Substituting eq. (18) into eq. (17) gives and equation for the corrections to the coefficients Ah;

required to minimize E:
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(19)

Applying eq. (19) for each of the coefficient h; = h, h,,..hy gives a set of N linear
equations in Ah;, Ah,,... Ahy. The values of T4/ h; in eq. (19) are obtained by calculating the

temperatures (Tgo) from the initial guessed values of h; and then, one by one, adding a small

amount 8h; (e.g. 8h; = 0.01 hy) to each of the h; values 7/J;. The derivative at each segment is
approximated by:

oré _Té-1)) -
h O

(20)

The solution steps for the above mentioned IHC technique are as follows:

1. Guess the values of all the h; coefficients, 1 =1, 2,...,N.

2. Calculate the temperatures at all the measurements points; i.e., 7/,.

3. Increase h, by a small amount, 8h; = 0.01 h; and recalculate the temperatures, i.e., T{I .

4. Repeat step (18) for coefficients h,, hs,..., hy.

5. Calculate the derivatives using eq. (20). Using these derivatives, apply eq. (19) for each
coefficient to obtain N equations for the N unknown Ah; values. Solve these equations.

6. Use Ah, values to get improved values for the coefficients, i.e. hy + Ahy, hy + Ahy,..., hy
+ Ahy,.

7. Repeat steps (2) to (6) until the coefficients cease to change (within a selected tolerance)
from one iteration to the next.

5.3 RESULTS AND DISCUSSION

The method is applied to one particular case of horizontal test section experiments. The
case chosen is from experiment #R1215 (Smith [12]) with a power level of 144.55 W, which is a
top heated case. The axial location chosen for data reduction is at the middle of the test section.
The 2-D data reduction was carried out using the commercial finite element code ANSYS along

with a set of peripheral programs. The system of peripheral computer codes were developed to
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interface with ANSYS for successive iteration calculations. One set of programs reads ANSYS
output files, cleans them up, and writes in a desired format. These are then used by another set of
programs to carryout the calculations according to IHC technique. The updated values of heat
transfer coefficients are obtained and used by ANSYS for the next iteration.

The programs are written with several constraints in order to prevent divergence of the
solution. The constraints are the percentage of changes of the values of heat transfer coefficients
from one iteration to the next. They also include constraints to prevent the matrix from having a
zero determinant. Two data files, one containing the measured temperatures and the other the
initial vlaues for heat transfer coefficient on the inner segments are required to initiate the
calculation along with the ANSYS program, which is written in batch mode.

For initial runs, the model used had a constant thickness of epoxy layer around the copper
tube (see Figure 27: For this case the air and epoxy layer shown is replaced by a continuous
epoxy layer). The thermal conductivities used for the copper tube and epoxy were 382.74 W/mK
and 1.038 W/mK, respectively. The inner surface was divided into five equal circumferential
sections, each of these sections was assumed to have a constant value of the heat transfer
coefficient.

After initial iterations, the circumferential variations of the inside heat transfer coefficient
showed lower values at the top and higher values at the bottom which is contrary to the expected
variations. One of the reasons may be the value of the thermal conductivity of epoxy used. After
talking with representative of OMEGA, the manufacturer of the epoxy, a modified value of 0.12
W/mK was taken for new simulation. Initial guessed profiled of heat transfer coefficients was
close to a backward “S” shape, which is expected to be the final profile. Figure 28 shows how the
sum of the squares of the error changes with the number of iterations. The errors are the
differences between the measured and calculated temperatures at each of the four location where
measurements were taken during the experiments. According to the figure, the error reaches a
value of about 10.0 within 50 iterations and remains steady with successive iterations. Figure 29
shows the circumferential variation of heat transfer coefficients at various stage of iterations. The
changes were very small between 150 and 170 iterations, which suggests that the iterations
process was close to convergence. The result show an increase of heat transfer coefficient from

the top to near 45 degrees and than decreasing drastically towards the bottom.
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Figure 27:Schematic of the model with air and epoxy on the outer layer.
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In order to obtain an improved result, i.e. greeting a heat transfer profile close to a
backward “S” shape, a new model was developed where the epoxy layer was not considered to
be continuous. The model has epoxy around the four thermocouples and air of equal radial
thickness on the rest of the outside surface of copper. The epoxy and air thermal conductivities
were taken as 1.038 W/mK and 0.028 W/mK, respectively. For this model Figure 30 shows the
highest value of h is still at around 45 degrees. The resulting constant value of E for this case was
around 10.0. Assuming that the present profile is due to the limited number of circumferential
segments for the convection coefficient (something similar to the number of nodes in finite
difference methods) the simulation was discontinued. A new model was developed and programs
modified accordingly to include ten circumferential segments for convection coefficients and
new iterations were initiated from an assumed backward “S” shaped profile. The result is plotted
in Figure 31 and again shows a peak value at around 45 degrees. Although the peak in h
remained near 45 degrees using ten inner wall segments as compared to five, the model clearly
increased h at zero degree. Similarly some improvement of the results were noticed using five
locations for measured temperatures instead of four, i.e., assuming the temperature at 90 degrees
from the top to be know. The value was obtained by linear extrapolation of the top two
temperatures. The interim results plotted in Figure 32 clearly shoes the maximum h to be on the
top. The simulation is not yet complete and will continue till convergence has been achieved.
Finally, one important constraint which must be imposed on all equations is the zero heat flux

condition on the vertical plane of symmetry at each radial location.

5.4 SUMMARY

Initial simulations using a IHC technique were performed. Simulations were performed
with both constant thickness epoxy layer and a layer consisting of both epoxy and stationary air.
Inside heat transfer profiles were obtained by dividing the inner surface to either five or ten
segments. The results showed a peak value of h at around 45 degrees instead of an anticipated
backward “S” shaped profile. In future funded work, more simulations must be performed using
more than four locations of known measured temperatures and the imposed symmetry

conditions.
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6.0 CONCLUSIONS

A vertical flow loop was designed and assembled to determine the local (circumferential
and axial) and mean wall temperature distributions for single-phase and two-phase (subcooled
and saturated) downward flow in both uniformly-heated and single-side heated vertical channels.
Freon-11 was used as the working fluid in order to directly relate and compare the results with a
previous experimental campaign which employed this same working fluid. For a given steady-
state experiment, the following parameters were held constant: (1) exit pressure, (2) inlet
temperature, and (3) mass velocity. For a given configuration of the 2.2m long cylindrical
channel test section, which had a 1.2m long heated section, the applied heat rate was varied from
zero through successive quasi-steady states to a level which corresponded to localized film
boiling in the test section.

The measurements showed that the boiling curve changes significantly at higher mass
velocities with respect to both the circumferential and axial directions. The slope of the boiling
curve changes in a non-monotonic fashion with respect to the circumferential directions. The
slope of the boiling curve changes in a non-monotonic fashion with respect to the circumferential
direction. The measurements point to the existence of a dry-out phenomenon occurring at
multiple levels of the applied heat for the single-side heated channel. In comparing the heat
transfer for horizontal channel flow with a vertically downward flow, the resﬁlts show that
significantly lower heat transfer occurs in the horizontal flow. However, this trend reverses as
both the Reynolds number and the applied heat rate increase.

Both the Liu-Winterton and Shah correlations were compared with the experimental data.
The Shah correlation predicted the uniformly heated tube data better. When a thermal hydraulic
diameter approach was used for the single-side heated case, the data at upstream locations for
Z/L. < 0.5 was bounded above by the Liu-Winterton correlation and below by the Shah
correlation. At Z/L. = 0.5, the Shah correlation bounded the data; and for Z/L > 0.5, both
correlations overpredicted the data with the Shah correlation being closest to the data. The
present results indicate that additional correlational development is needed.

In addressing some of the advanced space thermal management objectives concerning

accommodating high heat fluxes in non-uniformly heated systems, a large battery of experiments
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have been completed where local two-dimensional wall temperature variations were measured
for both single-phase and two-phase flow in a single-side heated circular tube. As noted above,
the results show significant axial and circumferential variations. Accurately accounting for such
variations can result in optimized future advanced space, enhanced (high heat flux) thermal
management systems.

Although most of the funded NASA work at Prairie View has not resulted in technical
papers in national publications, this work has resulted in four (4) papers which appeared in

international publications (see the Appendix).
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Two-Dimensional Wall Temperature
- Measurements and Heat Transfer Enhancement
for Top-Heated Horizontal Channels with
Flow Boiling

Ronald D. Boyd w Two-dimensional (circumfercntial and axial) wall temperature distribu-
Alvin Smith* tions were measured for top-heated coolant channels with internal geome-
- Jerry C. Turknett? tries that include smooth walls, spiral fins, and both twisted tape and spirat
- Thcrll?llul g‘cicnce Rescarch Center, ﬁ‘ns. Freon-11 was the workir?g fluid. The _ﬂ()w rcgimc_s‘ studicd were
College of Engineering and Architecture. sn‘nglc—phasc‘ subcooled .ﬂow boiling. and slrallhcq flow ht)llll‘!g. The inside
Prairie View A& M University., diamcter of all test scctions was near 10,0 mm. Circumferentially averaged
- Prairic View, Texas ' heat transfer coclficicnts at several axial locations were obtained for

sclected coolant channels for a volumetric flow rate of 4.738 x 10 ¥ m'/s.
0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall
: (avcraged over the cntire channel) heat transfer coefficients were com-
i pared for the various channel geometrics. This comparison showed that the
channel with large-pitch spiral fins had higher heat transfer coefficients at
all power levels. However, the results appear 1o indicate that if the twist
ratio (ratio of the twisted tape period to the inside diameter) is decreased.
the configuration employing both fins and a twisted tape will have had
greater enhancements.

Keywords: two-dimensional, wall tempcerature, single-side heating, flow
- - boiling, heat transfer cocfficient, horizontal channel

_ INTRODUCTION of heat transfer enhancement techniques, and (8) correla-

o . . . tions for mcan and local heat transfer and pressure drop.

Space commercialization will require efficient hecat trans- In the past, significant progress has been made in ex-

= fer systems. The future success of many efforts will be tending the experimental (c.g.. [2-4]) and correlational
= based on our understanding of the behavior of two-phase . _ annliealili . ace hes
L flow boiling in both space (z¢ duced o) and eart] (c.g., [5-10]) ranges of applicability for two-phase heat
cnvironmc%\ts This \Sasceenf L(;gz:cri rlcn ltjlff \éorzli([;hoedrm: transfer in uniformly heated tubes. However, most of the

Two-Phase Fluid Bchavior i[l)\ a Space Environment stJ)on— previous work did not include the essential effect of

sored by NASA in 1989 [1]. Flow boiling heat transfer singlc-side heating. In addition to being applicable to

single-side hcating and several gravitational levels, future

offers an enhancement alternative to forced-primed and X .
research efforts must also include basic phenomena such

capillarity heat management systems. The following ef-
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fects are essential to a better understanding of the factors
that affect flow boiling in heated tubes: (1) nonuniform
heat flux distribution, (2) local (axial and circumferential)
distributions of the heat transfer coefficient, (3) resulting
pressurc drop and pumping power requirements, (4) single
and doubie enhancement devices, (5) the relative advan-
tages of saturated and subcooled flow boiling regimes,
(6) flow channel aspect ratio effects, (7) the relative effects

as (1) orientation (e.g., vertical flow and bottom-heated
flow channels) and Marangoni effects, (2) other working
fluids such as ammonia, (3) flow stability, (4) binary fluids.
and (5) identification of the threshold inertia (Froude
number) beyond which gravity effects would be negligible.
For example, threshold inertia determination is necessary
to identify when oricntation and/or Marangoni cffects
become important. Although it is not apparent, the devel-
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opment of improved data reduction models is also essen-
tal to the accurate representation and interpretation of
the heat transfer data,

This work will assist the development of fundamentally
based heat transfer correlations that include cffects of
(1) enhancement device configurations for fluids other
than air {11], (2) basic flow paramcters that are fluid-in-
dependent, and (3) complex heat flux distributions.

This paper examines, experimentally, two-dimensional
(2-D) wall temperature variations for turbulent horizontal
channel flows that are heated from the top. The Reynolds
number (Re) was near 1.5 X 10*, and Freon-11 was the
working fluid. The temperature measurements were used
to obtain axial variations in the circumfercntially averaged
heat transfer coefficient (h,,). The overall heat transfer
coefficient (/) was determined and compared for four
different internal channel enhancement configurations
(sce Table 1)

1. Smooth wall [G = 781.2 kg /(m* )],

2. Spiral fins with a small pitch (SP, 0.652 fin/mm) and
G = 700.0 kg/(m? s),

3. Spiral fins with a larger pitch (LP, 0.4 fin/mm) and
G = 991.0 kg/(m? s),

4. Doubly ¢nhanced spiral fins with both large-pitch fins
and a twisted tape, G = 991.0 kg/(m? ).

EXPERIMENTAL INVESTIGATION

In this scction, bricf descriptions are given of the Freon-11
flow loop, test section, and the data reduction procedure.

Flow Loop

The flow loop (sec Fig. 1) was a closed system that
operates between 0.1 MPa (T, = 24°C) and 1.3 MPa
(T, = 124°C). The total power generation was 2.6 kW,
and the maximum mass velocity for these experiments was
1000.0 kg /(m? s). Under special circumstances, the loop
can be operated at a pressure near 0.04 MPa (T, = 0°C).
The loop has two reservoirs (0.25 m* each). The reservoirs
have scparate heat exchanger jackets for secondary tem-
perature control. The flow loop tubing was 25.0 mm L.D.
stainless steel. The flow loop consists of (1) the freon loop,
(2) air lines for pneumatically controlling valves and pulsa-
tion damper, and (3) vacuum lines for system evacuation.

The freon loop was designed to study both saturated
and subcooled flow boiling regimes. After the loop was
evaculated, it was filled with freon until the pressure was
slightly above atmospheric. After the charging process, the
fluid was circulated through the loop at the desired oper-

Table 1. Test Scction Internal Configurations
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ating conditions. Bleed valves were used to purge the loop
and transducers of any gases, and the flow conditions were
reestablished. During a given test, the heater tape power
output was adjusted to a given level. The flow rate of the
isothermal bath (50%-50% mixture of cthylene glycol and
water) was adjusted until the test section inlet tempera-
ture was at the desired level, A steady state was then
allowed to occur. After all the desired flow conditions
were again verified, the test section’s axial and circumfer-
ential wall temperature measurcments were recorded
along with all the flow conditions.

Referring to Fig. 1, the freon flowed from reservoir |
through a filter to the main pump (positive displacement).
which required a net positive suction pressure of at lcast
(1.02 MPa. After leaving the pump, the fluid passed near a
pulsation damper, which reduced the pressure and flow
oscillations. When the damper was used, a pnecumatically
controlled metering valve was used to stabilize the flow.
After exiting the metering valve, the fluid passed through
a turbine flowmeter and then through an unhcated flow-
developing scction (upstream portion of the test section)
that had a length greater than 40 times the test section
diameter. This flow-developing section had the same di-
ameter as the heated portion of the test section. As the
fluid flowed through the test section, the inlet and exit
temperatures and pressurcs were monitored. The down-
stream portion of the test section was heated (with a
heater tape) on its top half. A downstream valve was used
to control the test section exit pressure. The fluid then
passed through the heat exchanger where the cnergy
generated in the test section was removed. For these tests.
the working fluid bypassed both reservoir 2 and the charg-
ing pump and then flowed back to rescrvoir L.

Test Section

The test section was 2.23 m long and is shown in Figs. 2
and 3. The upstrcam unhcated portion of the test section
had smooth walls, and the downstream heated portion
(1.219 m long) had cither smooth walls or an enhanced
wall configuration (spiral fins and/or a twisted tape). In
cases where the spiral fins and twisted tape were used
simultaneously, the tape twist corresponded 1o the twist of
the spiral fins. The entire test section was insulated and
had three main ports (with a fourth extending from the
center one), mounted facing downward on cither end of
the test section. These ports were used to monitor the
inlct and exit fluid pressures, temperatures, and test sec-
tion differential pressure. Each test section had 28 Type K
thermocouples mounted on the outside surface of the

O.D. 1D Fin Height Fin Width
Tube Type® {mm) (mm) No. Fins (mm) (mm) Fins / mm
Spiral fin L.P. 127 9.5 16 0.56 3.0 0.4
Spiral fin L.P. /tape 12.7 9.5 16 0.56 3.0 0.4
Spiral fin S.P. 12.7 1.3 26 0.56 3.0 0.6
Smooth walls 1.27 1.07 — — —

" L.P.and S.P. denote large-pitch and small-pitch fins, respectively.
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Figure 1. Frcon-11 flow loop for both subcooled and saturated flow boiling experiments.

copper flow channel. Seven thermocouples were used to inlet temperature, and a volumetric flow rate of 4.738 x
make temperature measurements (7)) at specific axial 10" ° m'/s. These wall temperature measurements werc 28
locations (see Fig. 3) on the wall of the coolant channel. used, along with other measured conditions and the data
Figure 3 also shows the four circumferential locations reduction analysis, to determine the unknown steady-state
(¢ =0, w/4, 3m/4, and 7 radians) at which wall temper-  heat transfer coefficients (h and h ).

aturc measurcments were made for each of the seven

axial locations. All measurements were made for flow Data Reduction -
conditions of 0.19 MPa (absolute) exit pressurc, 22.2°C

The data reduction approach was based on a heated
hydraulic diameter [12] assumption. Figure 4 shows the
model used for this approach. This model was used to
compute a circumferentially averaged heat transfer coef-
ficient from the circumferentially averaged wall tempera-_

Thermocouples el it =0
{4 locations) ture. This latter temperature was computed from the four

{on epoxy pads) wall temperature measurements made on the outside of __
the test section at each of the seven axial locations.
Heater Briefly, this approach involves estimating the inside flow
Tape channel’s wall temperature by using an equivalent uni- ..
formly heated tube whose diameter is equal to the ratio of _
four times the actual flow channel cross-sectional area to
the heated perimeter. This was done using the model in_
Fig. 4, by accounting for the temperature drop across the
flow channel wall and the heat losses (convection and —
ek Wool r:adiation) from the test section to the ambient. An itera-
Insutation tive scheme was necessary to compute the inside wall
temperature. After accounting for finite heat losses, the
circumferentially averaged heat transfer coefficient was —
given by [12, 13]

h,=A/B, n
where _
r k
A= (—A)B,[In(-—g) < ] -, -T)
ra re (AN I
Plane of Symmaetry —

Figure 2. Cross scction of the heated portion of the test
section.
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Figure 3. Wall temperature measurement focations. («) cross scction ocations; (b) axial

locations along heated length.

r k- k. r.
B, = (T, 7?,)[1n(3) o+ —(In(—() .
e hory  ky g

and

B

N

re k r
= B,[ln(—() + lln(i) .
' ka T

In Eq. (1) the magnitude of the bulk temperature, T, is
dependent on T,,, which is the circumferentially averaged
wall temperature at r = rc (see Figs. 3 and 4). T; was
determined based on the magnitude of T, relative to the
wall temperature, T, which is the temperature re-

WONR?

quired for the onset of nucleate boiling (ONB). The bulk

Rock Wool
Insulation

Uniform
Heat Flux

Figure 4. Control volume for the heated hydraulic diameter
model.

fluid temperature is given by

- Tl([’)‘ T‘"’ < T‘*u\u'
" Tz T, )

For a given axial location, the measured circumferential
values of 7., were related to T, by

=0 3T (6= /D) FIT (b=3m/N) +T,($=m)
av 8 -

&)

Finally, the temperature 7T, was computed using the
correlation of Frost and Dzakowic (sec Collier [14]).

1.0 = 8.0Stn; Pe We* ™' EcJa*. (4)

In some cases, the heat transfer cocfficient was aver-
aged not only circumferentially but also axially. Although
there were seven axial locations at which wall temperature
measurcments were made, those measurements near ci-
ther end of the test section heated length were influenced
by end losses. Hence, the averaged heat transfer coeffi-
cient & was obtained by using the five central axial loca-
tions (Z,, Z,, Z,. Zs, and Z,),

Mo, + 20y + 2h,,, + 20, +hy

h = - L 5)
i g (

so that the values of h, (where (= 2,3,4,5,6) corre-
spond to the value of #1,, at various locations Z,.

An uncertainty analysis was developed using the above
formulas to estimate the uncertainty, &h . Using the
approach suggested by Moffat [15, 16], 8h,,, was found to
be +14.6 W/(m? K) (see the Appendix).

RESULTS

For the various internal channel configurations noted
above, comparisons were made of the 2-D wall tempera-
ture distributions, axial distribution of the mean (cir-
cumferentially averaged) heat transfer coefficient A, and
the totally averaged (circumferentially and axially) or
overall heat transfer coefficient s Additional details and
data tabulation can be found in [13, 17].

99



376 R.D. Boyd ct al.

Overall Heat Transfer

Figure 5 shows a comparison of the overall heat transfer
cocfficient for the four internal configurations. These
comparisons show that the spiral fins with the large pitch
resulted in a higher heat transfer coefficient essentially at
all power levels. The discontinuities in cach curve arc due
to cither nucleate boiling or severe flow structure changes
at certain axial or circumferential focations for a given
power level. Since the test section was horizontal and the
mass velocity level was relatively low (low Froude number),
stratification cffects were expected and were found to be
significant. Stratification conditions reduced the enhance-
ment effectiveness for all internal configurations. Prelimi-
nary cstimates indicated that thesc reductions could be as
high as a factor of 2 relative to vertical flows.

Although the mass velocity is different for some cases,
the Reynolds number (Re) for all cases is nearly the same:
(1) 1.61 x 10 for the large-pitch spiral fin tube with and
without a twisted tape, (2) 1.43 X 10* for the smooth
tube, and (3) 1.35 x 10" for the small-pitch spiral fin tube.
Hence, the above-noted differences cannot be attributed
to differences in Re.

Two-Dimensional Wall Temperature Distributions

Figures 6 and 7 show the power generation as a function
of measured outside wall temperature at various circum-
ferential and axial locations for the cases of large-pitch
spiral fins without and with a twisted tape, respectively.
The three parts in each of these figures are for three of
the four circumferential locations (¢ = 0, 7/4, and n;

sce Fig. 3). As & varied from 0 to 7/4. the peak w3
temperatures for the case of large-pitch fins with (&
twisted tape were consistently higher than those for xﬂ
channel with only the large-pitch spiral fins. This is dis-
playecd more dramatically in Fig. 8, which shows the ax 1
distribution of T (=T, ) for the four circumfereniyg
focations and constant power. While the wall temperature
distributions were cssentially identical for & = 37/4 and
m, there were significant differences at & - 0 and 7 1
(comparc Figs. 8¢ and 8b). It is apparent from thee
figurcs that the addition of a tape increased mixing ncai
the top of the channel and hence increased the stratifige
tion at downstream locations. For the case without &
twisted tape and for ¢ = 0, the wall temperature li
upstrcam portion of the test section between Z, (Z =
203.2 mm) and Z, (Z = 609.8 mm) was consistently foveg
than that with the twisted tape. However, this trend 2
versed downstream of Zg (Z = 812.8 mm). Since lﬂ
power level for the large-pitch finned tube in Fig. 8a
(P, = 493.0 W) was greater than that for the large-piv 1
finned tube with u twisted tape (shown in Fig. 86 w—
Pp = 480.0 W), the profiles for the former case will ﬁ
consistently lowcer than those for the latter case at the
same power level. With the exception of the diffcrcmz%
noted at ¢ = 0 and 7/4, the two profiles were similé
Further, for the case with the twisted tape and the large-
pitch fins with ¢ = 7/4, the wall temperature varicd
axially in a periodic manner between maxima of 1558
(upstrecam) and 90°C (downstrcam). As therc were 0
seven axial locations in which measurements were made.
it was not possible to determine the period of this varia-
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Figure 5. Comparison of the overall heat transfer coefficicnts for circular coolant channcls with different )
internal configurations.
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Figure 6. Measured outside wall temperature at selected axial locations as a function of the net power
generation for the spiral fin, large-pitch internat geometry at (@) ¢ = 0,(b) ¢ = 7/4,(c) ¢ = 7.

tion. However, the present measurements indicate that
the period was less than 0.4 m. As implied above, the
amplitude of the fluctuations decreased as Z incrcased.
These latter trends were influenced possibly by (1) peri-
odic liquid wetting near ¢ = /4 (off-center from the top

of the channel) due to the swirl flow, (2) liquid entrain-
ment into the vapor flow, and (3) circumferential and axial
conduction in the tube.

From Figs. 8a and 8b, stratification effects can be seen
to have becn significant in that (1) the wall temperaturcs
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Figure 6. Continued.
at ¢ = 0 remained significantly above (vapor region) the 8b for ¢ = 7/4) the alrcady high wall temperature a g

saturation temperature (7, = 43°C) and (2) thosc wall
temperatures at ¢ = 37/4 and 7 were consistently below
(tiquid region) T,,,. However, the tubes with the large-pitch
fins (with and without the twisted tape) increased stratifi-
cation at upstream locations more than the small-pitch
finned wall tube. This effect could have been caused by
reduced radial mixing. However, as Z was increased, the
stratification decreased more for the former two configu-
rations than for either the smooth tube or the smali-pitch
fins (compare Figs. 8a and 86 with 8c and 84d). Although
the power levels for the latter two figures are lower than
those of the former two, a comparison of the axial distri-
bution of the circumferentially averaged wall tempera-
tures clearly shows larger changes in the gradient of T,
with respect to Z for the large-pitch finned wall. In fact,
the large-pitch spiral fin with the twisted tape had the
greatest changes.

In all tube configurations, the wall temperature in-
creased (from 22.2°C) with Z near the entrance (Z,) and
later decreased (to near 25.0°C) as Z approached Z;, near
the exit of the test section.

Circumferentially Mean, Axially Distributed
Heat Transfer

Figures 8a and 8b emphasize the significance of the
circumfcrential temperature variations in systems with
singlc-side heating. It is apparent that in cases where
stratification is important, the addition of a twisted tape
will, at some locations, exacerbate (compare Figs. 8a and

102

small heat transfer coefficient. However, the data also
indicate that the twisted tape will enhance, rather than
inhibit, the heat transfer in some cases. Before turning -
this enhancing effect, the adverse influence of the twisto®
tapc on the heat transfer coefficient will be discussed.
The detrimental influence on f1,, due to the addition
the twisted tape was cmphasized by considering the ¢
cumferentially averaged heat transfer cocfficients as™=a
function of the power generation, with Z as a parameter.
At each axial location, a sudden rise in A was a manifc
tation of the inside wall temperature (computed from t
measured outside wall temperature) exceeding the abso-
fute wall superheat required for the onset of nucleate
boiling. Relatively speaking, larger values of 7/
[1500-2000 W /(m® K)] werc obtained at both the e _
trance (Z,) and the exit (Z,) than at intermediate loca-
tions. This is due to (1) entrance effects, (2) the presence
of the single-phase liquid at thc bottom of the tut
(3) axial conduction losses, and (4) the absence of heati
from the heater tape ncar the exit. Therefore, the data
near the test scction exit and entrance may not be reprs
sentative of the actual behavior. Nevertheless, when t
values of h_, at the intermediate axial locations are coin-
pared, one finds that the levels of A, before and after
ONB were higher for the tube without the twisted tape
The above trends could possibly be reversed by reca
figuring the twisted tape. The twisted tape twist ratio (/77
ratio of the axial period to the inside diameter) appears to
be the underlying factor that could improve the enhanc
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Figure 7. Continued.

ment capabilitics of the tube with both fins and a twisted
tape. Supporting evidence for this possibility can be ob-
served by comparing either Fig. 6b with Fig. 7h or Fig. 84
with 86 for ¢ = w/4. As noted earlier, the effect of the
twisted tape is to raise the local wall temperature at some
axial locations and lower it at other locations. In cases
where the wall temperature was lowered, these lower
values (as well as the peak values) decreased with increas-
ing Z. It would appear that if thc period of these tempera-
ture fluctuations could be decreased, the lower levels of
the wall temperature would prevail over a large portion of
the flow channel. Lower temperatures, and hence larger
h,,, would result owing to increased mixing between the
stratified fluid layers. This overall trend, of enhanced heat
transfer accompanying reduced f, has becn pointed out
in the literature (e.g., see Kirishenko [18] and Hong and
Bergles [19]) but has never to our knowledge been docu-
mented by local measurements on top-heated tubes. How-
ever, to verify that this is also true for stratified flows, the
present work should be extended to include lower values
of t4.

The axial distribution of the circumferential mean heat
transfer coefficient (4,,) is shown in Fig. 9 for three of the
four internal tube configurations. The axial trends for the
smooth wall case in Fig. 9¢ form a basis for the other
cases. The trends in the axial variation of /1 (Z) become
increasingly irregular as the internal enhancement pro-
gresses from smooth wall tube to small-pitch fins and
eventually to large-pitch fins with the twisted tape. There
was a reduction and subsequent increase in h (Z) as Z
increased, which is similar to observations made by Reid
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et al. [20] for the case of uniform heating. From Fig. 9c,
there was a local (axial) peak in N, (Z), which moved
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downstrcam as the power increased. This may be repre- =

sentative of a slug-type flow and may be a unique conse- ==

quence of the top-heated boundary condition. The width
of the axial distribution and the magnitudes of h,(Z)
increased with the power. For the smooth wall case, all
curves appeared to approach an asymptote as Z in-
creased. The addition of enhancement devices disrupted
these rather regular trends. The fluctuations of A, (Z)
with increasing Z still existed but became more irregular
and greater in amplitude.

PRACTICAL USEFULNESS/SIGNIFICANCE

This experimental examination of the 2-D local (axial and
circumferential) wall temperature vanations of a horizon-
tal, top-side-heated coolant channel provides a unique
body of single- and two-phase data for (1) the practical
configuration of flow channels heated from one side, for
which almost no data and/or engincering correlations
exist; (2) a basis for the futurc determination, using in-
verse conduction techniques, of 2-D local variations in the
heat transfer coefficient; and (3) eventually a basis for
developing a new generation of engineering correlations
that apply to single-side-heated channels with thermally
conducting walls for single- and two-phase forced flows.
For practicing engineers, single- and two-phasc results
are given for (1) the circumferential mean but axially
distributed heat transfer coefficient and (2) the circumfer-
ential and axial mean hcat transfer coefficient. The pres-

idiine
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ent results can assist the practicing engineer who may be
involved with a design using top-side heating to (1) assess
the error involved and possible correction factors associ-
ated with the use of conventional or classical heat transfer
correlations and (2) make preliminary comparisons of
the relative merits of various heat transfer enhancement
techniques.

CONCLUSIONS

The present work provides experimental data characteriz-
ing the localized thermal transport in top-heated horizon-
tal coolant channels with enhancement devices. The pres-
ent local wall temperature measurements form a basis for
future comparisons with three-dimensional numerical pre-
dictions. Such comparisons will be useful in explaining the
underlying local flow conditions that are favorable to both
local and overall heat transfer enhancement in top-heated
configurations. This can be demonstrated in a limited way
by noting the behavior of the measured wall temperature
for ¢ = w/4 in Figs. 8a and 8b. The effect of adding a
twisted tape was to move the peak wall temperature
upstream. The present cases should be expanded to in-
clude additional circumferential and axial resolution of
the wall temperature variations and comparisons at addi-
tional fevels of Re. The two-dimensional wall temperaturc
measurements were used to determine the circumferen-
tially mean but axially dependent heat transfer coefficient.
The flow in the thermally conducting coolant channel was
hydrodynamically developed but thermally developing with
regions of (1) single-phase convection, (2) local subcooled
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boiling, and (3) a predominating stratified flow over mos™
of the channel length. In addition, three-dimensional ther-
mal conduction effects were important in the channc’s
wall. -

The results show that the coolant channel with th¥®
large-pitch spiral fins had a larger overall heat transfer
coefficient than smooth tubes or tubes with either smal=2
pitch spiral fins or a combination of large-pitch spiral fir
and a twisted tape. However, local measurements indi—
cated that the effectiveness of the latter case will improve
for stratified flow as the period of the twisted tape
reduced. Although similar observations have becen mad
in the literature for nonstratified flows, the present local”
measurements not only document this effect but also
(1) provide a basis for comparisons with three-dimer-—
sional, two-phase, numerical models and (2) form a bas!
for assessing present and evolving heat transfer correla-
tions.

We thank Dr. Joseph Atkinson, Russ Long, John Thornborrow. an
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wish to express our appreciation to Quaid Peatiwala for replotting
the data, drawing Fig. 3, and rechecking the mass velocity specific. -
tions. Finally, we are grateful to NASA (JSC and Headquarters) fo -
supporting this work under contracts NAG 9-310 and NAG 9-631. =

APPENDIX: UNCERTAINTY ANALYSIS s

This study has resulted in the determination of circumf{c .=
entially mean as well as the axially and circumferentially
mean heat transfer coefficients from measurements of (1Y,
the test section outside local wall temperature; (2) th _
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Freon-11 flow conditions, which include flow rates, exit
pressure, and inlet and exit bulk temperatures; and (3) the
ambicnt temperature. The relationships between  these
quantitics were summarized in Egs. (1)=(5). Following the
approach outlined by Moffat [15, 16]. the uncertainty in
the heat transfer cocfficient A, 1s

o

i i

dh, \* b, o
sh, = || —=sx,| +|—==6C, . (AD
X C

where X, rtepresents all independent variables and C,

i

represents corrections used to account for calibration
defects, system-sensor interactions, and system distur-
bance errors. The double indices in Eq. (A.1) imply sum-
mation over all independent or correction variables. If
effects of C, arc neglected, 8h,, is given by

2 Ay, 2
) + ( - 53) , (A2)
aB

ah .,
8h,, = ( 8A
dA

where 4 and B are given in Eq. (1). Since A and B arc
not actually independent variables, their relationships with
these variables are as follows:

(A3)

8A = Function(T, . P,. T,),

so that

2 > 2142
A A sp i AaA - N A B
= + o + éT, :
(»} Pp p (7 T'“ m (7 Tx ES R
and
8B = Function(T,,T,.T,, /), (A4)
so that

IB ? IB 2
8B = 5P| + 5T,
aP. ! dT

p m

) L4
3B . B .
+ 8T, | +|[—=5T,
aT, aT,

The partial derivatives for 4 and B were obtained from
Eq. (1) [21]). Additional derivations are also needed for
both 7; and P,. The uncertainties for Z and G were
8Z = 0.0016 m and 8G = 8.4 kg/(m? s), respectively.
The uncertainties in measuring all temperatures werc
assumed equal and will be denoted by 87. If 6P, = 0.1
W, ther 84 = 762.3 W/m?, 8B = 0.027 K, dhy/dA =
992 x 10 *K ", oh_/dB = —462.6 W/(m? K?). This
resulted in 84, = +14.6 W/{(m" K).

NOMENCLATURE

surface area, m”

specific heat, kJ /(kg K)

D thermal hydraulic diameter, m

E. Eckert number [= 10 'G*/pj,c (T = TLL
dimensionless

G mass velocity, kg/(m” s)

h  circumferentially and axially averaged heat

transfer cocfficient W/(m* K)
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I axially distributed but circumferentially
averaged heat transfer cocfficient, W/(m? K)

i, heat transfer coefficient due to natural
convection (sce Fig. 4), W/(m? K)
specific latent heat of vaparization, kI /kg
i, cnthalpy subcooling of the fluid, kJ /kg

Ja®  Jakob number (= Aigy, /i), dimensionless

k thermal conductivity, W /(m K)

Pe  Peclet number (= Re Pr), dimensionless

P net power gencration, W

&
g. heat flux due to natural convection from

outside of test section (sce Fig. 4), W/m?
g heat flux due to radiation from the outside of
the test section, W/m
r radial coordinate for the data reduction modcl
(sce Fig. ), m

I

Stong  Stanton number at onsct of nucleate boiling,
dimensionless
T, bulk temperature of the flowing fluid (sce
Fig. 2), °C
T, (¢, Z) local measured outside wall temperature of the

test section (see Figs. 3 and 4), °C
T($.7) outside wall temperature of the test section
[= T,(¢,2)].°C
saturation temperatures (316 K at (.19 MPa
for Freon-11), °C
7. ambient temperature, °C
We*  modified Weber number (= p,G*D/pi o),
dimensionless )
7 axial coordinate for the heated portion of the
test section (see Fig. 3), m

Greek Symbols

¢ circumferential coordinate; see Figs. 2, 3, and
6. In some figures ¢ is written out as phi.
dimensionless

m  half of a full rotation or 180%; in some figures,
7 18 written out as pi

p, density of gascous phasc of fluid, kg/m*

Py, density of liquid phase of fluid, kg/m*

Subscripts
A,B,C denote domains A, B, C (see Fig. 4)
i axial location (= 1,2....,7) (sec Fig. 3)
w wall
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MEASUREMENTS OF LOCAL HEAT TRANSFER FOR
FORCED CONVECTION AND FLOW BOILING IN
HORIZONTAL, UNIFORMLY HEATED

SMOOTH TUBES

Ronald D. Boyd, Alvin Smith, Xiaowei Meng, and Jerry Turknett
Thermal Science Research Center (TSRC),

College of Engineering and Architecture, Prairic View A & M Unuversity,
Prairie View, Texas, USA

This work deals with improved ways to characterize the local heat transfer inside smooth
circular channels. The objectives are to: (1) measure local (axial) channel wall temperatures,
and (2) make comparative predictions of local subcooled flow-boiling heat transfer for the
case of the a uniformly heated channel. Flow boiling experiments were conducted with
Freon-11 in horizontal, copper, uniformly heated coolant channels with smooth walls.
Temperature measurements were made on the outside surface of the copper channel at four
circumferential and seven axial locations. Comparisons were made for inside computed wall
temperature and the axial mean circumferential heat transfer coefficient with a subcooled
flow-boiling model based on the assumption of large Froude number. The predictions served
as a comparative baseline and a qualitative check for the data.

Flow-boiling heat transfer plays an important part in engineering and in
today’s high-technology fields, such as space-station energy systems, microclec-
tronic devices, and nuclear reactors. Based on theoretical and numerical analysis as
well as the large amount of available data, investigators have been able to create
advanced software for both predictions of local heat transfer and experimental data
reduction for single-phase and some two-phase flows in vertical channel geometries
with uniform-heat-flux boundary conditions. Although it been has known for
decades that flow boiling increases and enhances heat transfer, little attention
beyond the work of Bergles and Rohsenow [1] and Shah [2] has been given to
advanced heat transfer model development for subcooled flow boiling inside
channels or ducts with uniform circumferential heating.

In the past, there have been (1) a large number of experimental investigations
made for flow boiling heat transfer for different fluids, (2) large pressure and flow
rate ranges, and (3) a large number of the empirical models for single-phase
convection, subcooled flow boiling, saturated flow boiling, and critical heat flux.
The present work involves the measurement and prediction of local wall tempera-
ture for Freon-11 in an uniformly heated, smooth horizontal channel.

The present address of Jerry Turknett is Westinghouse Savannah River Company, P.O. Box 616.
Bldg. 705-1c, Aiken, SC'29802. ~ o

Address correspondence to Professor Ronald D. Boyd, Department of Mechanical Engincering,
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Copyright © 1994 Taylor & Francis
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NOMENCLATURE
A, cross-section arca of tube, m? x equilibrium quality
A, external tube surface area, m? zZ axial coordinate, m
G mass velocity, kg/m? s
Lter inlet fluid enthalpy, J /kg
i(Z) local fluid enthalpy, J/kg Subscripts
Pt exit pressure, MPa
q" heat flux, W /m? b bulk hiquid
r radial coordinate, m { liquid
T,(2Z) local bulk temperature, °C m circumferential mean
T.(Z)  local wall temperature, °C w wall
AT, superheat, (T, — 7,,,°C o ambient
AT, subcooling, (T, - T,).°C sat saturation

The thermal hydraulic model (THM) [3, 4] was employed to reduce the
experimental data for local heat transfer. A subcooled flow boiling model {5, 6] was
used to predict the local (axial) heat transfer for comparisons with the experimen-
tal data. The comparisons were given for the axial inside wall temperature and the
axial heat transfer coefficient.

EXPERIMENTAL INVESTIGATION

Figure 1 shows the flow boiling Freon-11 loop (3, 4]. The loop is a closed
system that operates between 0.08 and 0.30 MPa. The loop was constructed of
stainless steel and copper. The maximum power generation (Pp) was 2.6 kW with a
maximum mass velocity of approximately 0.3 Mg/m’s. Freon-11 flowed from
Reservoir #1 to the main system pump, then passed a pulsation dampener that,
when used, will reduce the pressure and flow oscillations. After exiting from the
metering valve, the fluid flowed through a turbine flowmeter and then through an
unheated flow developing section (upstream part of the test section). Finally, the
working fluid flowed through the heated section (downstream part of the test
section). The exit pressure was maintained at a certain value during the test by a
pneumatically controlled valve placed at the channel exit. The Freon then passed
through a cooler (heat exchanger), bypassed the charging pump, and then back to
Reservoir #1.

The copper test section was 121.9 cm long with inside diameter 1.07 cm and
outside diameter 1.27 cm. The test section was heated with heater tape uniformly,
and had thermocouples mounted on epoxy pads under the heater tape. The
thermocouples were placed in four circumferential (¢ =0, 7/2, 37/2, ) and
seven axial (Z = 0, 20.32, 40.64, 60.96, 81.28, 101.60, and 121.9 cm) locations. The
origin for the circumferential coordinates, ¢, is at the top of the vertical symmetry
plane. Type K thermocouples were attached with highly conductive bond epoxy.
The thickness of the epoxy layer averaged 0.12 cm. All the primary data were
recorded by Fluke 2280B. The data logger functions used in the present experi-
ment include: (1) temperature measurements, (2) frequency measurements corre-
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22 R. D. BOYD ET AL.

sponding to volumetric flow rates of the turbine flowmeter, and (3) heater tape
voltage and current measurements. The test section pressures (inlet and exit) were
also measured using membrane transducers.

DATA REDUCTION

The data reduction approach was based on a heated hydraulic diameter (3]
assumption. Figure 2 shows the model used for this approach. This model was used
to compute a circumferentially averaged heat transfer coefficient from the circum-
ferentially averaged wall temperature. This latter temperature was computed from
the four wall temperature measurements made on the outside of the test section at
each of the seven axial locations. The model in Figure 2 accounts for the
temperature drop across the flow channe! wall, and the heat losses (convection and
radiation) from the test section to the ambient. An iteration scheme was necessary
to compute the inside wall temperature. After accounting for finite heat losses, the
circumferentially averaged heat transfer coefficient was given by

h _A (n
"B

Too

Rock Wool
Insulation

Unitform Heat

Figure 2. Control volume for the heated hydraulic diameter model. 7, = 0.475
em, rg = 0.635 cm, re = 0.6985 cm, and r, = 3.2385 cm.
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where
k r k .
A=(—A)Bl[ln(—b) < —(—‘)(TM—TI)
T r, h.rp 4
B=B,+B;+B,
P r
p'C
Bl - A:kB
r k k r
B,=(T, - T.) ln(—D) +— 4 (—C)ln(—c)]
e h.r, kg rg
k r r k,
By = (T, - T,)[—Cln(—"” - [m(—”) + ](T,, ~-T)
k, ry re horp
and

ne-a o] (o]

In the above expression for the circumferentially averaged heat transfer coefficient
(h,,), the magnitude of the bulk temperature, 7,, is dependent on 7,,, which is the
circumferentially averaged wall temperature at r = r.. 7, was determined based
on the magnitude of T,, relative to the wall temperature, T, which is the

NB
temperature required for the onset of nucleate boiling. The bulk fluid temperature
was given by

T,(2) for T,, < T,

= wonB

sat av = Twong

where T, was computed using the Frost and Dzakowic correlation [7). Although
the flow is subcooled, the onset of ONB did not occur simultaneously around the
circumference of the horizontal test section. As a result, a portion of the inside
surface could be experiencing fully developed boiling while another circumferential
portion of the same cross section could be experiencing single-phase flow, and still
another portion could be experiencing subcooled film boiling. As a first attempt to
reconcile these different processes occurring in the same cross section, the above
approximation was made. For a given axial location, the measured circumferential
values of 7, were used to obtain a circumferentically averaged temperature, T,
Using the approach suggested by Moffat [8, 9], the complete uncertainty analysis
for A, was developed; it can be found in [6]. The uncertainty in the heat transfer
data was found to be +14.6 W/m? K.
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24 R. D. BOYD ET AL.

FLOW BOILING MODEL

The local (axial) heat transfer coefficient is defined as the ratio of local
applied heat flux to the difference between the local inside wall temperaturc and

the local fluid bulk temperature.
The local film temperature was used to evaluate all the thermophysical

properties in all correlations.
The local mean bulk temperature was calculated from the first law of

thermodynamics for given values of the applied heat flux g”, location Z, mass flux
G, and inlet fluid temperature T,,,. From the first law,

anj(Z)
GA

i(Z) =l + (3)

Cc

The local bulk temperature, T,(Z), was obtained from i,(Z) via the saturation
table.

The developed flow boiling model [5, 6] was used to predict local heat
transfer coefficients and local wall temperatures for uniformly heated vertical
channels for flow in the following regimes: (1) single phase, (2) partial nucleate
boiling, and (3) fully developed boiling.

In order to use the film temperature as the reference temperature for
temperature-dependent thermophysical properties, the wall temperature must be
known for each of the above three regimes. A straightforward trail-and-error
method was used to find T, [6]. Once the local wall temperature was determined,
the local (axial) heat transfer coefficient was computed. Fluid property data
sources are from DuPont [10], Kreith [11], and Vargaftik [12].

RESULTS

Comparisons were made between the data and an existing flow boiling model
{5, 6]. The data sets involved a horizontal test section and included two flow rate
levels, five axial locations, and four circumferential locations. All data involved
uniformly heated tubes. Since the models apply only within the nucleate subcooled
boiling region, data in the saturation boiling region (x = 0) was not reduced, and
all predictions stopped beyond this region.

Comparison of the THM data with predictions of the local (axial) heat
transfer coefficients for Freon-11 are presented in Figures 3 through 8. It is
essential to note that since the predictive models neglect gravitational effects, only
qualitative comparisons can be made with 155 data points, which apply to a
horizontal uniformly heated flow channel. As noted with the comparisons with the
water data in [6], the predictive models strictly apply to thermally fully developed
flows.

With the above in mind, comparisons of flow boiling model show that the
best agreement is obtained with the data when most of the above conditions are
not violated. This occurs at the larger values of the axial coordinate (Z=25=
81.28 cm, and Z = Z6 = 101.60 cm), and higher mass velocities. Poorer agreement
was obtained at upstream locations (Z < 81.28 cm) and at the lower mass velocity,
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28 R. D. BOYD ET AL.
where flow developing and orientation effects appear important. This is due mainly
to the fact that the experimental flow configuration is horizontal and the Froude
number is relatively small.

Inspection of Figures 3 through 7 show a different functional relationship
between h,, and power (P,) as P, increases. Initially, A, increases gradually with
P, and later h,, decreases with increasing P,. These changes in trend are a result
of a localize boiling front (1) increasing in intensity, (2) propagating circumferen-
tially, and (3) eventually, in part, forming a localized film boiling region over a
portion of the circumference. The first two noted events cause i, to increase with
P . However, the occurrence of a partial (growing) film boiling circumferential
patch or region reversed this trend, so that at sufficiently high values of P,, h,
decreased as P, increased. In the latter case, for large values of P, and at a given
axial location, the wall—fluid interface had stable circumferential patches, which
were (1) single phase, (2) subcooled partial and fully developed boiling, and finally
(3) subcooled with film boiling. Additional work is proceeding to expand this study
to include wider ranges of mass velocity and subcooling and additional quantitative
measurements of the heat transfer coefficient with respect to the circumferential

coordinate.

CONCLUSIONS

New subcooled flow-boiling wall temperature data for a uniformly heated,
horizontal flow channel have been obtained. The predictions served as an initial
baseline or limit for the data. However, additional work is needed to expand the
present data reduction model to one that includes circumferential and orientation

effects.
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Abstract

A vertical flow loop was designed to determine local
(circumferential and axial) and mean wall temperature
distributions for saturated and subcooled flow boiling in a
single-side heated vertical channel with downward flow.
Experimental results are given for flow with Freon-11 mass
velocities of 280, 210.0, and 140.0 kg/m’s. The measurements
indicate a significant circumferential variation in the
temperature. The data also indicate that a different mode of heat
transfer is present at each circumferential location. The two-
dimensional local measarements of the channel wall temperature
show that corresponding local heat transfer coefficient variations
will be significant.

Nomenclature
G Mass Velocity (kg/m’s)
Tav Circumferentially averaged wall temperature (°C)
Z Axial coordinate or measurement location (m)
Greek
¢ Circumferential coordinate or measurement location
(degrees)
Subscripts
J Axial location index

Introduction and Objectives

Future space programs and commercialization will require
an active thermal control system (Miller et al.' ) to provide
moderate temperature heat rejection for different system
modules. It is essential that the thermal rejection system selected
be able to operate under a variety of complex and non-uniform
heat flux distributions. Other requirements for the selggted
system include minimum overall system mass, and pumping
power (Ungar et al.? and Reinarts et al.> ). The high heat flux

potential and low mass requirement of the two-phase thermal

contro] system makes them an attractive option for advanced
space applications. Although work is proceeding in studying the
two-phase pressure drop™, little efforts are being devoted to

' Graduate Student, Mechanical Engineering, Member ASME

studying heat transfer related topics in single-side heated
Systems. In particular, optimization of the heat transfer, with
accompanying reduced mass and pumping power requirements,
will require a knowledge of the two-dimensional wall
temperature distributions in advanced and commercial space
systems (Boyd et al.‘). Implementation of two-phase thermal
control system will also require additional emphasis on flow
boiling phenomenon as it pertains to non-uniform heat flux
distributions, resulting wall temperature distributions, heat
transfer coefficients, flow channel aspect ratio, and orientation.
From the literature review, there has been much work
completed for the two-phase heat transfer comrelations for a
uniform heat flux distribution. Correlations presented by
Kandlikar,® Shah,® Gungor and Winterton,” and Boyd and Meng®
cover different fluids, vast ranges of flow rates, the entire
spectrum of quality, and low and high subcoolings. The former
three correlations were only recommended for saturated flow
boiling and the latter for subcooled flow boiling. These
correlations are valid for only smooth tubes, and one must avoid
using them when orentation is important. The former three
correlations were derived from the data collected from horizontal
flow boiling, where as the latter for high Froude number (>
50.0). Recently, several researchers have considered the effect of
heat transfer enhancement devices (fins, and twisted tapes) and
have presented correlations, but most of these are again for
horizontal flow boiling or condensation on horizontal tubes.
Patankar et al.,” Wen et al.,' and Jaber et al.,"" have studied the
effect of fins on the heat transfer coefficient for condensation.
While Wen et al.'® presented experimental data to facilitate
theoretical model development of heat transfer coefficient for
condensation on horizontal integral-finned tubes, Jaber et al."
found that the condensation heat transfer coefficient can be
increased by up to 280% for copper if commercially available
enhanced tubes are used in condensers over smooth copper
tubes. He also looked at copper alloy tubes and .__fp'und that heat
transfer is enhanced by an average of over 30% with finned
tubes relative to smooth tubes. Boyd et al,* Smith,"” and
Turknett,'? have studied the flow boiling in horizontal channels

' Honeywell Professor and Director of the TSRC, Mechanical Engineering, Member ASME

' Assistant Professor, Mechanical Engineering, Member ASME
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with uniform and top-side heating with and without
enhancements. They made measurements of the two-dimensional
axial and circumferential wall temperature distributions, and
presented results for the axial distribution of the heat transfer
coefficient for four internal tube configurations.

As stated before almost all of the work done in two phase
flow is for uniform heat flux and for this heat loading condition,
there is no circumferential variation in wall temperature. Hence,
at any power level only single mode of heal transfer is used to
calculate heat transfer coefficient at a given axial location. It is
understandable that by using a uniform heat flux distribution,
the modeling for heat transfer coefficient is greatly simplified,
but in engineering applications with non-uniform circumferential
heat flux distributions, this work will show that the wall
temperature variations are significant. Some applications where
this may be important include thermal management for the
advanced space systems, high heat flux fusion components, high
heat flux electronic components, in-tube boiling systems, boilers,
condensers, and heat exchangers. Tt should be made clear here
that great care must be taken when approximating a non-uniform
heat flux condition with a uniform one because by using this
approximation, severe restricts or even anomalies may result.
This is another reason why applications requiring single-side
heating of channels with flow boiling will be better
characterized by measurements of the local 2-D wall temperature
and heat transfer variations.

For advanced space thermal management systems to
‘become a reality, extensive efforts are needed to collect and
correlate 2-D two-phase experimental data for heat transfer
correlations for complex heat flux distributions. The long-range
scope of this study includes making 2-D wall temperature
measurements as a function of mass velocity, inlet subcooling,
tube diameter, tube internal geometry, tube orientation, gravity
level, and heating configuration. The anticipated Freon -11 mass
velocity and tube diameter range between 95.0 and 1,300.0
kg/m’s, and between 9.5 and 25.4 mm, respectively. The tube
inside wall configuration will include smooth wall, finned wall,
and combined twisted tape and finned walls. In the present
paper, we present an example of 2-D outside wall temperature
measurements made with subcooled Freon-11 flowing downward
in a smooth vertical channel with single-sided heating and study
the effects of different mass velocities on wall temperature
distribution.

Experimental Setup

The system used to perform forced convection boiling
experiments in vertical tubes (downward flow) was based on the
system initially developed by Boyd et al* and later used by
Smith,'? Boyd,'* and Turknett". Figure 1a shows the Freon-11
vertical flow boiling loop. This closed loop is constructed of
stainless steel and copper, and operates between 3.4 kPA and
0.17 MPa. The maximum power generation capability is 2.7 kW
and the maximum volume flow rate is approximately 2.97E-4
m’/sec. The Freon-11 is stored in a reservoir which is filled

using a chemical resistance centrifugal pump. After filling the
reservoir, the Freon-11 is circulated through the closed loop at
the desired operating pressure and flow rate. By circulating the
Freon-11 before any data is recorded, any leaks in the system
can be detected by using a halogen leak dectector. Then the
desired inlet temperature is obtained by properly adjusting the
chiller/isothermal bath. The energy is transferred between the
chiller and Freon-11 by way of a commonly connected heat
exchanger. During testing, the outlet temperature of the chiller is
adjusted to maintain a constant inlet Freon-11 temperature for a
given experimental run. The working fluid for the chiller is a
60/40 ethylene glycol - distilled water mixture.

A description of the closed flow loop and the function of its
components 1s instructive. The Freon-11 flows from the
reservoir to the filter, where all the contaminates are removed
before the fluid enters the posilive displacement pump. The
positive displacement pump requires a net posmve suction of at
least 0.02 MPa. This pump was selected for durability. After
leaving the pump, the fluid passes through the pulsation damper.
The damper reduces the pressure and flow oscillations. The
pressure fluctuations are also minimized by using the
pneumatically controlled metering valve. Exiting the control
valve, the fluid flows to the heat exchanger, where its
temperature is set at a desired value by adjusting the chiller
parameters. After exiting the heat exchanger, the fluid passes
through the turbine flow meter and enters the unheated "flow
developing" section or upstream part of the test section which
has a length greater than forty (40) times the test section
diameter. The fluid then enters the heated section of the test
section. A downstream pneumatxcally controlled valve is used to
control the test section exit pressure. The heated fluid then
passes through another heat exchanger where the energy
generated is removed partially by using tap water. Finally, the
fluid flows back to the reservoir and the flow cycle is complete.

The test sections used in this experiment are the same as
used by Boyd et al.* The test sections are 2.235 m long copper
tubes (see Figure 1b), and consists of two parts: (1) Upstream
unheated section to facilitate flow development, and (2) A
downstream single-side heated section. For the present case, the
inside diameter (D) was 25.4 mm and the outside diameter was
28.5 mm. -

The heated section has a smooth inside surface. The test
section was heated with heater tapes which varied in width
based on tube diameter and are 1.22 m long. Each tape has
power generation capacity of 2.66 kW. The test section was
designed with flexibility and ease of replacement in mind.
Although, the pressure losses due to union connector at both top
and bottom ends of the test section are assumed to be small,
computations and additional measurements, will be performed
later to estimate these losses. The entire test section was
insulated to minimize the heat losses. In addition to the primary
two parts of the main test section, each part had pressure-
temperature measurement poris upstream and downstream of the

test section.
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Test Section Description

The heated part of the test section was divided intd seven
203 m axial intervals. At each of the axial locations there are
seven thermocouples installed circumferentially at 0, =/, 3x/8,
n/2, 5n/8, 3n/d, and = degrees (see Figure 2) , with 0 being at
the top heated portion of vertical symmetry plane in Figure 2.
This test section thermocouple arrangement will allow better
circumferential resolution of the wall temperature variation than

previous test sections (Boyd,'* Smith,'? and Turknett," ) because
seven circumferential locations were used rather than four.

The thermocouples were installed by using high thermal
conductivity epoxy. Special care was taken when thermocouples
were adhered to the tube. The thermocouple beads were placed
in good contact with the tube so that as little epoxy as possible
was used. Based on forty repeated measurements of the epoxy
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thickness between the thermocouple and the copper tube, the
mean thickness was 0.194 mm, and the standard deviation was
0.007 mm.

Data Reduction Analysis

Forty-nine (49) local temperature measurements were made
on the outside surface of the heated portion of the test section for
each experiment. These outside temperatures must be related to
the inside wall temperature so that the inside heat transfer
coefficient can be computed. Two techniques will be used to
reduce the wall temperature data: (1) the heated thermal
hydraulic approach (Boyd et al.*) (see Figure 3), and (2) a multi-
dimensional inverse conduction analysis using a numerical finite
element computation code called ANSYS.

The initial data reduction is based on the heated hydraulic
approach used by Boyd et al‘ In this analysis, we compute
circumferentially averaged heat transfer coefficient from
circumferentially  averaged  wall  temperature.  The
circumferentially averaged temperature was computed from the
seven wall temperature measurements made on copper tube
outside surface at each axial location by using the piece-wise
linear approach similar to that used by Reid et al."” Using their
approach, the circumferentially averaged outside wall
temperature can be related to the seven circumferential
measured temperatures (Tm; at O degrees, Tmz at n/d, T3 at 37/8
etc.) by the equation given below:

T Doyt Ty v 7Ly T 47 43 + 2 gy
av 16 .

The temperature T,, was used with the model presented by
Boyd et ald to account for temperature drop across channel
walls, and convective and radiative heat losses to the
surroundings. Using this model, the mean heat transfer
coefficient (hy, ) at a given axial location can be obtained.

Toa

(7 locations)
Heater

Rock Woaol
Insulation

Plane of Symmetry

Figure 2: Cross-section of Heated Portion of the Vertical
Test Section

Figure 3: Thermal Hydraulic Model

The uncertainties for each measurement in this experiment
are as follows: (1) for geometric measurements, + 0.00Imm; (2)
for voltage, + 0.05 mV; (3) for current, + 0.005 mA; (4) for
pressure, + 0.7 Pa; (5) for flow rate, + 6.3E-7 m¥s; and the
resulting uncertainty in wall temperature was estimated to be ,
+02°C.

Results

For a 254 mm inside diameter single-side heated test
section, 2-D (axial and circumferential) wall temperature
distribution results are presented for mass velocities (G) of
280.0, 210, and 140 kg/mzs, for an inlet temperature of 22.6 °C,
and an exit pressure of 0.1843 MPa (absolute).

2-D Wall Temperature Distrii)ution
Figures 4 through 10 show the distributions as measured

outside wall temperature at different circumferential and axial
locations for mass velocities of 280.0, 210, and 140 kg/m’s. The
wall temperature increased as the fluid flowed from upstream to
downstream (axial locations #1 to #7) in the test section.
Furthermore as ¢ varied from 0 to =, the temperature decreased
circumferentially because of a change from a circumferentially
heated region (¢ = 0 to /2 ) to a non-heated one (¢ = 57/8 to =)
for all the flow rates. This change in temperature can be
observed clearly in Figures 4 through 10.

It is desired to present the local 2-D wall temperature
profile with respect to the net power generation for all forty-nine
axial and circumferential locations for three different levels of
mass velocity. In order lo facilitate this, Figures 4 through 10
contain the profiles for ¢ = 0 to 180.0 degrees, where Figures a
and b (e.g., 4a and 4b) in this figure series contain profiles for
different axial locations. Figures 4a, 5a, 6a, etc. each contain
profiles for axial location Zi, Z, , Za , and Z4 Finally, Figures
4b, 5b, 6b, etc. each contain profiles for axial locations Zs , Zs ,
and Z7.
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Figure 10: Measured Outside Wall Temperature (Copper Channel) Axial Distribution as a Function
of Net Power Generation for Single-Side Heated Smooth Channel for Different Mass Velocities; Tube

Outside Wall Temperature (°C)

Figure 10b (¢ = 180.0 Degrees)

ID = 25.4 mm, Inlet Temp = 22.6 °C, and Exit Pressure = .1843 MPa (absolute).
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From these figures, it can be seen that the wall temperature
distributions are closely spaced for ¢ = 0 to #/2 and ¢ = 57/8 to
n. This is to be expected because of single-side heating. From
the plots, one can also observe that the wall temperature at ¢ = 0
remains above the saturation temperature (Tsat = 41.65°C) and
the wall temperatures at ¢ = 5n/8, 3n/4, and © were consistently
below Tsat for all the mass velocities except at the highest
power levels.

Although the data analysis is continuing, preliminary
computations using the Davis-Anderson correlation (Davis and
Anderson,'” ) indicate that the onset to nucleate boiling occurs at
a wall temperature of 45.7°C, 44.1°C, and 42.45°C for mass
velocities of 280, 210, and 140 kg/m’s, respectively. For the
computations, all Freon-11 properties were evaluated at the
saturation temperature using Perry’s handbook.'® Using these
computations as a basis and the basic characteristics of the
boiling curve, both axial and circumferential influences on the
quasi-boiling curve are displayed in Figure 4 through 10. Figure
4 (¢ = 0.0 degrees) through Figure 7 (¢ = 90.0 degrees) show
that the onset of nucleate boiling (ONB) at G = 210.0 kg/m’s
does occur slightly above 41.7°C simultaneously over the heated
section. For the conditions shown, this occurred at a power
below 181.2 W simultaneously at all axial locations between
locations #2 and #6. For G = 280.0 kg/m’s, ONB in a similar
fashion occured below 312.0 W. The onset to fully developed
boiling (OFDB) for G = 210.0 kg/m?s occurred simultaneously at
all these locations at a power level of 181.2 W. Although further
data reduction is needed to determine actual inside wall
temperatures, it is clear from the figures that the boiling curve
will shift to the right with higher values of Z. The data also
show a slight increase in [Tw]ou (outside wall temperature) in the
circumferential direction from ¢ = 90.0 degrees to 0.0 degrees.
These data provide a quantitative record which shows the
regions or patches where various simultaneous boiling
phenomena occurred. Even though the test section was made of
highly conducting copper, the measured outside wall
temperatures cannot be used directly to correlate ONB or CHF.
However, these measurements are closely linked to the local
variations of the inside wall temperature and hence are related to
the local two-dimensional boiling heat transter at the inside
wall.

From the above discussion of wall temperature
distributions, some additional characteristics of the curves
become apparent. The critical heat flux occurred between ¢ = 0.0
and 90.0 degrees at power levels above 212.7 W for 210.0, and
near 212.7 W for 140.0 kg/m’s. The data for 280.0 kg/m’s must
be extended so that similar observations can be made.

Effect of Mass Velocity Variations

In this paper we have presented the complete wall
temperature profile for three different mass velocities namely,
280.0, 210.0 and 140.0 kg/m’s for the same tube of inside
diameter of 24.5 mm. Figures 4 through 10 show the complete
profile of the wall temperature for all the three mass velocities.
From these plots, it is clear that there is significant effect of

mass velocity on the wall temperature for this single-side
heating configuration. From Figures 4 through 10, the effect of
mass velocity at lower power levels on wall temperature and
mode of heat transfer are not significant. However for higher
power levels, increases in the mass velocity shift the quasi-
boiling curve to the left with a corresponding increase in slope in
both the heated and unheated regions.

Figures 4 through 10 show also a clear change in the shape
of the boiling curve with respect to both mass velocity and
circumferential orientation. For ¢ less than or equal to 90.0
degrees, increasing the mass velocity by identical increments
from 140.0 kg/m’s to 210.0 kg/m’s and from 210.0 kg/m’s to
280.0 kg/m’s results in greater heat transfer enhancement for the
latter range. Further, these figures show that for moderate power
levels the flow structure results in the boiling curves for the
former range almost overlaying one another. However, the
boiling curves for latter or higher mass velocity range are
completely separated one from another. At the higher mass
velocities and for ¢ < 90.0 degrees, the slope of the boiling
curves increases and later decreases as ¢ increases. This
emphasizes the three dimensional nature of the flow, and in
particular the circumferential dependence due to single-side
heating. Finally, the circumferential propagation of the boiling
front can be seen by comparing Figures 4 through 7 with Figures
8 through 10 for G = 140.0 kg/m’s. At lower values of ¢, ONB
occurs below 181.0 W, however for larger ¢, ONB occurs near
420.0 W. So as ¢ increases from 90.0 degrees, the stratified
nature of the flow is obvious at all axial locations and all mass
velocities for this downward vertical flow in a single-side heated
channel.

Work is ongoing to obtain the axial distribution of the
circumferentially averaged heat transfer coeflicient using the
thermal hydraulic approach (Boyd et al.* ) for different diameters
and different mass flow rates. Further efforts are in process to
obtain- the local (axial and circumferential) heat transfer
coefficient using a non-linear inverse conduction approach
(Huque and Boyd" ).

Conclusions

Two-dimensional wall temperature measurements were
presented for the forced convection boiling of Freon-11 in a
single-side heated vertical channel with downward flow for a
mass flow rate of 280.0, 210.0, and 140.0 kg/m’s. Experimental
data was obtained for circumferential and axial wall temperature
distributions. The measurments show that the boiling curve
changes significantly at higher mass velocities and with respect
to both circumferential and axial coordinates. Due fo
circumferential transport, the slope of the boiling curve changes
in a non-monotonic fashion as ¢ increases.
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heated channel with a Freon-11 mass flow rate of 210.0 kg/m’s
are given. The two-dimensional local (axial and circumferential)
measurements of the channel outside wall temperature were
obtained experimentally and the corresponding axially and
circumferentially mean heat transfer coefficients (h) were
calculated. This flow configuration was shown to have twenty
percent higher values of h and forty percent higher ultimate

and Space Administration (NASA), including Space Station
Freedom and contemplated missions to the Moon and to Mars,
will require the use of advanced thermal control concepts to
efficiently transport large amount waste heat over long distances
(Miller et al., 1993). These missions will require an active
thermal control system to provide moderate temperature heat
rejection for different system modules. It is essential that the

critical heat flux than the case of a top-heated channel with thermal rejection system selected be able to operate under a
= horizontal flow. The data points to the existence of multiple variety of complex and non-uniform heat flux distributions.
= levels of critical heat flux, which is unique to the single-side Other requirements for the selected system include minimum
< heated geometry. Finally, these averaged heat transfer overall system mass, and pumping power (Ungar et al., 1993).
coefficients ranged from 30.0 to 230.0 W/m’K for the net heat The high heat flux potential and low mass requirement of the
= flux range of 180.0 to 11,000.0 W/m®. _ two-phase thermal control system makes them an attractive
L] option for advanced space applications.

Nomenclature Before a two-phase thermal control system can be
= G Mass Velocity (kg/m’s) implemented in the space project, there are several phenomena
- h Circumferentially and axially mean heat that must be clearly understood. Among the many important

transfer coefficient (W/m’K) aspects of two-phase thermal control and transfer systems
s hey Circumferentially-averaged but axially distributed heat needing further study are the two-phase pressure drops and ﬁ_’e
== transfer coefficient (=1, 2, ... 7) (W/m’K) two-dimensional (2-D) heat transfer coefficient distributions in
g Tav Circumferentially averaged wall temperature (°C) smooth and enhanced tubes for various gravity levels including

Z Axial coordinate or measurement location (m) normal earth gravity, zero gravity, lunar gravity, and Martian
Ed gravity (Reinarts et al., and Ungar et al., 1993). For the case of
= Greek normal earth gravity, this study investigates 2-D wall

¢ Circumferential coordinate or measurement Jocation temperature variations, and mean heat transfer coefficient
== (degrees) variations as a function of applied power. Other gravity
- Subscripts conditions will be considered in future studies.

i Circumferential location index Recently, increased emphasis has been placed on
o J Axial location index understanding the pressure drop in two-phase flows in earth, low
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gravity lunar, and Martian environments. Ungar et al. (1993)
and Reinarts et al. (1993) studied the pressure drop and flow
profiles for lunar-g and Martian-g two-phase flow. They have
developed an extensive data base for these two reduced gravities
and have recommended correlations for two-phase flow pressure
drop under these conditions. Miller et al. (I993j reviewed many
two-phase frictional pressure drop prediction methods for
smooth tubes under normal and microgravity conditions. For
qualities greater than 0.50, they recommended Troniewski and
Ulbrich’s correlation. However for qualities less than 0.50, the
Lockhart-Martinelli/Chisholm correlation was recommended.

Another important aspect of two-phase thermal control
system is the development and understanding of fundamental
characteristics of flow boiling heat transfer at different gravity
levels. In particular, optimization of the heat transfer, with
accompanying reduced mass and pumping power requirements,
will require a knowledge of the two-dimensional heat transfer
coefficient distributions in advanced and commercial space
systems (Boyd et al., 1995b). Implementation of two-phase
thermal control system will also require additional emphasis on
flow boiling phenomenon as it pertains to non-uniform heat flux
distribution, resulting heat transfer coefficients, flow channel
aspect ratio, and orientation.

From the literature review, it is clear that progress is being
made on the prediction of pressure drop for two-phase thermal
control systems for various gravity levels and flow conditions.
However, the same cannot be said for the local heat transfer
coefficients for two-phase flow boiling. There has been much
work completed for the two-phase heat transfer correlations for a
uniform  heat flux distribution. Correlations presented by
Kandlikar (1991), Shah (1977), Gungor and Winterton (1986),
and Boyd and Meng (1995a) cover different fluids, vast ranges
of flow rates, the entire spectrum of quality, and low and high
subcooling. The former three comelations were only
recommended for saturated flow boiling and the latter for
subcooled flow boiling. These correlations are valid for only
smooth tubes, and one must avoid using them when orientation
is important. The former three correlations were derived from
the data collected from horizontal flow boiling, where as the
latter for high Froude number (> 50.0). Recently, several
researchers have considered the effect of heat transfer
enhancement devices (fins, and twisted tapes) and have
presented correlations, but most of these are again for horizontal
flow boiling or condensation on horizontal tubes. Patankar et al.

~(1991), Wen et al. (1991), and Jaber et al. (1991), have studied

the effect of fins on the heat transfer coefficient for
condensation. While Wen et al (1991) presented experimental
data to facilitate theoretical model development of heat transfer
coefficient for condensation on horizontal integral-finned tubes,
Jaber et al. (1991) found that the condensation heat transfer
coefficient can be increased by up to 280% for copper if
commercially available enhanced tubes are used in condensers
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over smooth copper tubes. He also looked at copper alloy tubes
and found that heat transfer is enhanced by an average of over
30% with finned tubes relative to smooth tubes. Boyd et al.
(1995b), Smith (1992), and Turknett (1989) have studied the
flow boiling in horizontal channels with uniform and top-side
heating with and without enhancements. They made
measurements of the two-dimensional axial and circumferential
wall temperature distributions, and presented results for the
axial distribution of the heat transfer coefficient for four internal
tube configurations.

The literature search suggests that: (1) there is a lack of
local experimental data and local heat transfer correlations for
an external single-side heat flux distribution, and (2) very few
studies have been completed on investigating the flow aspect
ratio, and orientation effects for uniform and non-uniform heat
flux distributions.

In addition to the advanced space system, single-side heat
flux boundary conditions appears in many other applications.
Such advanced applications include high heat fusion
components, high heat flux electronic components, in-tube
boiling systems, boilers, condensers, and heat exchangers.
Therefore, advanced applications requiring flow boiling will
necessitate better characterizations of the local 2-D heat transfer
variations for single-side heated conditions.

For optimized 2-D two-phase thermal management systems
to become a reality, extensive efforts are needed to collect and
correlate experimental data for heat transfer correlations for
complex heat flux distributions. This is the long-term objective
of this ongoing study. The long-range scope of this study
includes making 2-D wall temperature measurements as function
of mass velocity, inlet subcooling, tube diameter, tube internal
geometry, tube orientation, gravity level, and heating
configuration. The anticipated Freon -11 mass velocity and tube
diameter range between 95.0 and 1,300.0 kg/m®s, and between
95 and 254 mm, respectively. The tube inside “wall’
configuration will include smooth wall, finned wall, and
combined twisted tape and finned walls. In the present paper, we
present an example of 2-D outside wall temperature
measurements made with subcooled Freon-11 flowing downward
in a smooth vertical channel with single-sided heating. These
wall temperature data were then used to obtain circumferentially
and axially averaged heat transfer coefficients. Finally,
comparisons were made with a similar flow in a horizontal
channel] (Boyd et al., 1995b).

Experimental Setup

The system used to perform forced convection boiling
experiments in vertical tubes (downward flow), was based on
the system initially developed by Boyd et al. (1995b) and later
used by Smith (1992), Boyd (1986), and Turknett (1989). Figure
la shows the Freon-11 (R-11) vertical flow boiling loop. This
closed loop is constructed of stainless steel and copper, and
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operates between 3.4 kPA and .17 MPa. The maximum power
generation capability is 2.7 kW and the maximum volume flow
rate is approximately 2.97E-4 m*/sec. The Freon-11 is stored in
a reservoir which is filled using a chemical resistance centrifugal
pump. After filling the reservoir, the R-11 is circulated through
the closed loop at the desired operating pressure and flow rate.
By circulating the R-17 before any data is recorded, any leaks in
the system can be detected by using a halogen leak detector.
Then the desired inlet temperature is obtained by properly
adjusting the chiller/isothermal bath. The energy is transferred
between the chiller and R-11 by way of a commonly connected
heat exchanger. During testing, the outlet temperature of the
chiller is adjusted to maintain a constant inlet R-/] temperature
for a given experimental run. The working fluid for the chiller is
a 60/40 ethylene glycol - distilled water mixture.

A description of the closed flow loop and the function of its
components is instructive. The R-11 flows from the reservoir to
the filter, where all the contaminates are removed before the
fluid enters the positive displacement pump. The positive

To Exhaust wall Mounted

Instrument Air

15

D
1
Isothermal Bath
Heat
Exchonger [ ]
VAV VA Ve Ve N

— Throttling Vaive

Safety
1> Valve

Freon 11 Pulsation

I

Z

—+-Axial & Circumferential TS
"] |Flow
.| |Direction

I LAAAA
J/Q 1 AAAAA

displacemcm pump requires a net positive suction of at least
0.02 MPa. This pump was selected for durability. After leaving
the pump, the fluid passes through the pulsation damper. The
damper reduces the pressure and flow oscillations. The pressure
fluctuations are also minimized by using the pneumatically
controlled metering valve. Exiting the contro] valve, the fluid
flows to the heat exchanger, where its temperature is set at a
desired value by adjusting the chiller parameters. After exiting
the heat exchanger, the fluid passes through the turbine flow
meter and enters the unheated "flow developing” section or
upstream part of the test section which has a length greater than
forty (40) times the test section diameter. The fluid then enters
the heated section of the test section. A downstream
pneumatically controlled valve is used to control the test section
exit pressure. The heated fluid then passes through another heat
exchanger where the energy generated is removed partially by
using tap water. Finally, the fluid flows back to the reservoir and
the flow cycle is complete.

Turbine Flow
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Figure 1a: Schematic of the Vertical Downward Flow Boiling Loop
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Figure 1b: Test Section (TS) Configuration for Temperature and Pressure Measurements

Test Section Description

The test sections used in this experiment are the same as
used by Boyd et al. (1995b). The test sections are 2.235 m long
copper tubes (see Figure 1b), and consists of two parts: (1)
Upstream unheated section to facilitate flow development, and
(2) A downstream single-side heated section. For the present
case, the inside diameter (D) was 25.4 mm and the outside
diameter was 28.5 mm.

The heated section has a smooth inside surface. The test
section is heated with heater tapes which vary in width based on
tube diameter and are 1.22 m long. Each tape has power
generation capacity of 2.66 kW. The test section was designed
with flexibility and ease of replacement in mind. Although, the
pressure losses due to union connector at both top and bottom
ends of the test section are assumed to be small, computations
and additional measurements, will be performed later to
estimate these losses. The entire test section was insulated to
minimize the heat losses. In addition to the primary two parts of
the main test section, each part had pressure-temperature
measurement ports upstream and downstream of the test section.

The heated part of the test section was divided into seven
203 m axial intervals. At each of the axial locations there are
seven thermocouples installed circumferentially at 0, x/4, 3%/8,
®/2, S7/8, 3n/4, and =, and degrees (see Figure 2) , with 0 being
at the top heated portion of vertical symmetry plane in Figure 2.
This test section thermocouple arrangement will allow better
circumferential resolution of the wall temperature variation than
previous test sections (Boyd, 1986, Smith, 1992, and Turknett,
1989) because seven circumferential locations are used rather
than four.

The thermocouples were installed by using high thermal
conductivity epoxy. Special care was taken when thermocouples
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were adhered to the tube. The thermocouple beads were placed
in good contact with the tube so that as little epoxy as possible
was used. Based on repeated measurements (forty) of the epoxy
thickness between the thermocouple and the copper tube, the
mean thickness was 0.194 mm, and the standard deviation was
0.007 mm.

Data Reduction Analysis

Forty-nine (49) local temperature measurements were made
on the outside surface of the heated portion of the test section for
each experiment. These outside temperatures must be related to
the inside wall temperature in order for us to calculate the inside
heat transfer coefficient. Two techniques will be used to reduce
the wall temperature data: (1) the heated thermal hydraulic
approach (Boyd et al., 1995b) (see Figure 3), and (2) a multi-
dimensional inverse conduction analysis using numerical finite
element computation code called ANSYS.

The initial data reduction is based on the heated hydraulic
approach used by Boyd et al. (1995b). In this analysis, we
compute circumferentially averaged heat transfer coefficient
from circumferentially averaged wall temperature. The
circumferentially averaged temperature is computed from the
seven wall temperature measurements made on copper tube
outside surface at each axial location by using the piece-wise
linear approach used by Reid et al. (1987). Using their approach,
the circumferentially averaged outside wall temperature can be
related to the seven circumferential measured temperatures (Tmi
at 0 degrees, T at /4, Tz at 37/8 etc.) by the equation given
below:

1o T 3T + 2 + 2 2T + 3T + 7y (1
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coeflicient was estimated by Boyd et al. (1995b), and Huque et
al. (1993) to be less than 10 percent.

Results
Too For a 254 mm inside diameter single-side hecated test
- section, results are presented for a mass velocity (G) of 210.0
Thermocouples kg/m’s, an inlet temperature of 22.6 °C, and an exit pressure of
. (7 locations) 0.1843 MPa (absolute). The results include:
- N Heater 1. 2-D (axial and circumferential) wall temperature
- Tape distributions;
2. Axial distnbutions of mean wall temperature
B (circumferentially averaged), and,
~ 3. Axially and circumferentially averaged mean heat transfer
coefficient distributions.
. 2-D Wall Temperature Distribution
— - Figures 4a-4g, and Figure 5, show the distnbutions as
Rock Wool measured outside wall temperature at different circumferential
v Insulation and axial locations. The wall temperature increased as the fluid
4 Plane of Symmetry flowed from upstream to downstream (axial locations #1 to #7)
Figure 2: Cross-section of Heated Portion of the Vertical in the fest section. Furthermore as ¢ varied from 0 to x, the
- - Test section temperature decreased circumferentially because of a change
.__ from a circumferentially heated region (¢ = 0 to #/2 ) to a non-
heated one (¢ = Sn/8 to x).
o G = 210 kefm’s, Inlet Temp = 22.6°C
Single-Side Heated Tube, D = 25.4 mm; ¢ = 0.0 Degrees
e 800.0
= 00 g'l'ﬂl - a2
. 600.0
w o 5000
¥ — Vert. Flow
= € w00 . Horiz. Flow
B H —21=00m
< = 3000 --72=02032m
—~-23=0.4064m
2000 { 24 =0.609% m
= -—25=818m
=3 100.0 ~-Z26=1016m
hat Figure 3: Thermal Hydraulic Model o ~21=1219m
- , - 00 + 4 ! ¢ 4 ¢ + ‘
= The temperature T,y was used with the model presented by 150 250 350 450 650 650 750 850 950
- Outaide Wall Temp O
< Boyd et al. (1995b) to account for temperature drop across . .
channel walls, and convective and radiative heat losses to the Figure 4a: Measured Outside Wa‘ll Tem-pcl:ature
surroundings. Using this model, the mean heat transfer (Copper Channel) Axial Variation as a
coefficient (h,, )at a given axial location was obtained. Function of the Net Power Generation for a
The uncertainties for each measurement in this experiment Single-Side Heated Smooth Channcl; ¢ = 0.0
i are as follows: (1) for geometric measurements, + 0.001mm; (2) Degrees
= for voltage, + 0.05 mV, (3) for current, + 0.005 mA; (4) for ) ] .
C pressute, + 0.7 Pa; (5) fo flow rate, + 6.3E7 mi; and (6) for ““z ;gi“g; in ‘i“mt:”e ?:l“d‘?" _‘:’S?“"dr °':’1L;l‘;
temperature, + 0.17 °C. The resulting uncertainty in heat transfer lgures 5. s higure s 1ows the axi 1st.n‘ utions for the
= temperature for seven circumferential locations, as well as the
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Figure 4: Mcasured Outside Wall Temperaturc (Copper Channel) Axial Variation as a Function of the Net Power
Genceration for a Single-Side Heated Smooth Channel.
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circumferentially averaged wall temperature (dotted line). From
these figures, it can be seen that the wall’ temperature
distributions are closely spaced for ¢ = 0 to n/2 and ¢ = 5n/8 to
n. This is to be expected because of single-side heating. From
the plots, one can also observe that the wall temperature at ¢ = 0
remains above the saturation temperature (Tsat = 41.65°C) and
the wall temperature at ¢ = 5n/8, 3n/4, and = were consistently
below Tsat.

Although the data analysis is continuing, preliminary
computations using the Davis-Anderson correlation (Davis and
Anderson, 1966) indicate that the onset to nucleate boiling
occurs at a wall ternperature of 44.1°C. For the computations, all
Freon-11 properties were evaluated at the saturation temperature
using Perry’s handbook (1984). Using this computation as a
basis and the basic characteristics of the boiling curve, both
axial and orientation influences on the quasi-boiling curve are
displayed in Figure 4a through 4g. Figure 4a (¢ = 0.0 degrees)
through Figure 4d (¢ = 90.0 degrees) show that the onset of
nucleate boiling (ONB) does occur slightly above 41.7°C
simultaneously over the heated section from ¢ = 0.0 to 90.0
degrees. For the conditions shown, this occurred at a power
below 181.2 W simultaneously at all axial locations between
locations #2 and #6 but at different outside wall temperatures.
Similarly, the onset to fully developed boiling (OFDB) occurred
simultaneously at all these locations at a power level of 181.2
W. Although further data reduction is needed to determine
actual inside wall temperatures, it is clear from the figures that
the boiling curve will shift to the right with higher values of Z.
The data also show a slight increase in [Tw]ox (outside wall
temperature) in the circumferential direction from ¢ = 90.0
degrees to 0.0 degrees. These data provide a quantitative record
which shows the regions or patches where various simultaneous
boiling phenomena occurred. Even though the test section was
made of highly conducting copper, the measured outside wall
temperatures cannot be used directly to correlate ONB or CHF.
However, these measurements are closely linked to the local
variations of the inside wall temperature and hence are related to
the local two-dimensional boiling heat transfer at the inside
wall.

Heat Transfer Coefficient

Once the local wall temperature distribution was obtained,
the mean (circumferentially averaged) wall temperature was
computed and this temperature was used in the heated thermal
hydraulic approach (Boyd et al, 1995b) to obtain the
circumferentially averaged heat transfer coefficient for each
axial location and for different power levels. Then, this
circumferentially averaged heat transfer coefficient (hyy ) was
used to obtain overall (circumferentially and axially mean) heat
transfer coefficient using the equation (2), which is based on a
linear piece-wise approximation between each axial location.
The 1st and the 7th axial locations are not included due to end
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losses. Hence, the axially and circumferentially mean heat
transfer coefficient was defined as

- hm2+2hﬂa+2:rg+2hms+hm | )

The mean heat transfer coefficient distnbution for the mass flow
rate of 210.0 kg/m’s is given on Figure 6. From the above
discussion of wall temperature distribution, the OFDB occurred
at power level of 181.2 W, and the critical heat flux occurred
between ¢ = 0.0 and 90.0 degrees at a power level of 212.7 W.
This can be confirmed again from the mean h distribution given
in Figure 6. It is clear from Figure 6 that, at the OFDB, there is
an increase in the mean h which occurs at a power of 181.2 W.
This agrees with the above noted predictions using the Davis-
Anderson correlation.

Since the flow channel is heated from one side, the CHF
occurted locally in a small circumferential angular interval A¢
directly below the heater and extending from ¢ =0 to ¢ = A}. As
the power level is increased, A increases and the ONB occurs at
successively larger values of ¢. If the largest value of ¢ at which
the ONB occurs is denoted by ¢ons, then the: (1) single-phase
flow regime occurs in the region where ¢ > ¢ons, (2) stable
nucleate boiling regime occurs in the region Ad < ¢ < dons, and
(3) stable film boiling regime occurs for ¢ < Ap. A similar
condition was postulated by Boyd et al. (1984) and similar
observations were recently observed by Marshall et al. (1994)
who used water as the working fluid. This stable circumferential
distribution seems to be preserved by energetic mixing and flow
regime interaction. The result of this stable flow is a continual
increase in h with power (see Figure 6) until a second and less
pronounced CHF occurs. Figures 4a through 4f show that this
occurred at a power level of about 500.0 W, which is more than
a factor of two above the first CHF.

Figure 6 also compares the overall h obtained for a vertical
channel from the present work with similar results for a
horizontal channel, which was obtained by Smith (1992).
Smith’s results for h had to be updated (see Boyd et al, 1995b)
from the reported circumferentialy and axially averaged heat
transfer coefficients. Direct comparisons with our mass flow rate
of 210.0 kg/m’s cannot be made because of different mass flow
rates for horizontal channel. Efforts are on way to run cases with
identical flow rates so quantitative comparisons can be made.
However, qualitative comparisons can be made with the
horizontal flow case of 184.84 kg/m’s. The heat transfer
coefficient, h, increases with power for both cases, but the peak
value of h for the horizontal flow (Top- Heating) near the second
CHF (ultimate CHF) is almost twenty percent less than that
obtained for the vertical. This difference can be attributed to the
difference in mass velocity to some extent, but further
investigation will indicate the extent of this contribution. The
present results for the horizontal case indicate that the mass
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velocily influence on h is small in the range between 92.0 and
184 kg/m’s, which implies that the difference shown in Figure 6
between the horizontal and vertical flow 1s due to principally the
orientation differences. Finally, the power level at which the
second CHF occurred for the horizontal flow is more than forty
percent less than that for the vertical flow

As stated before, the circumferential measurement of wall
temperature was made at seven circumferentially locations
rather than four as used by Bovd et al (1995b), Smith (1992),
and Turknett (1989) The effect of selected locations for the
circumferential temperature measurement on mean heat transfer
coefficient is given by Figure 7. Shown are plots of h as a
function of power when seven and four circumferenual
measurement locations were used It is clear that the more
circumferential measurement locations used for the temperature,
the more accurate the value of the mean h and better the
resolution for later determinations of local variations in the heat
transfer coefficient. But if for cost or geometric restrictions of
the channel only four circumferential temperature measurements
can be made, what are the best locations which will result in a
good estimate for h? The results in Figure 7 show that the
circumferential locations used by Boyd et al (1995b), Smith
(1992), and Turknett (1989) resulted in the best agreement with
the case where seven circumferential locations were chosen
(present work). Work is ongoing to obtain the axial distmbution
of the circumferentially averaged heat transfer coefficient using
the thermal hydraulic approach (Bovd et al 1995b) for different
diameters and different mass flow rates Further efforts are in
process to obtain the local (axial and circumferential) heat
transfer coefficient using a non-linear inverse conduction
approach (Huque and Boyd, 1994)

Conclusions

In this paper, 2-D (circumferential and axial) wall
temperature measurements, and circumferentially-and-axially
averaged heat transfer coefficient (h) distributions were
presented for the forced convection boiling of Freon-11 in a
single-side heated vertical channel with downward flow for a
mass flow rate of 210.0 kg/m’s Experimental data was obtained
for 2-D wall temperature distributions and axial distributions of
mean wall temperature (circumferentially averaged), which was
reduced to obtain h.

This work confirms recent observations by Marshall et al.
(1994) and previous postulations by Bovd et al. (1984). It shows
that the effects of single-side heating are to allow multiple levels
of critical heat flux to occur before the channel wall is no longer
wetted by hiquid phase.

Additional work is needed to extend the results to wider
ranges of G, inlet temperature, heating configuration, and D so
that: (1) further comparisons can be made wath horizontal flow,
(2) local and mean variations in the heat transfer coefficient can
be obtained, and (3) a basis can be established for testing
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existing and new correlations, as well as forced convection and
flow boiling numerical models
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